Abstract
Abstract
Background
The repair of large bone defects is a great challenge in clinical practice. In this study, copper-loaded-ZIF-8 nanoparticles and poly (lactide-co-glycolide) (PLGA) were combined to fabricate porous PLGA/Cu(I)@ZIF-8 scaffolds using three-dimensional printing technology for infected bone repair.
Methods
The surface morphology of PLGA/Cu(I)@ZIF-8 scaffolds was investigated by transmission electron microscopy and scanning electron microscopy. The PLGA/Cu(I)@ZIF-8 scaffolds were co-cultured with bacteria to determine their antibacterial properties, and with murine mesenchymal stem cells (MSCs) to explore their biocompatibility and osteoconductive properties. The bioactivity of the PLGA/Cu(I)@ZIF-8 scaffolds was evaluated by incubating in simulated body fluid.
Results
The results revealed that the PLGA/Cu(I)@ZIF-8 scaffolds had porosities of 80.04 ± 5.6% and exhibited good mechanical properties. When incubated with H2O2, Cu(I)@ZIF-8 nanoparticles resulted generated reactive oxygen species, which contributed to their antibacterial properties. The mMSCs cultured on the surface of PLGA/Cu(I)@ZIF-8 scaffolds were well-spread and adherent with a high proliferation rate, and staining with alkaline phosphatase and alizarin red was increased compared with the pure PLGA scaffolds. The mineralization assay showed an apatite-rich layer was formed on the surface of PLGA/Cu(I)@ZIF-8 scaffolds, while there was hardly any apatite on the surface of the PLGA scaffolds. Additionally, in vitro, Staphylococcus aureus cultured on the PLGA/Cu(I)@ZIF-8 scaffolds were almost all dead, while in vivo inflammatory cell infiltration and bacteria numbers were dramatically reduced in infected rats implanted with PLGA/Cu@ZIF-8 scaffolds.
Conclusion
All these findings demonstrate that PLGA/Cu(I)@ZIF-8 scaffolds possess excellent antibacterial and osteoconductive properties, as well as good biocompatibility and high bioactivity. This study suggests that the PLGA/Cu(I)@ZIF-8 scaffolds could be used as a promising biomaterial for bone tissue engineering, especially for infected bone repair.
Funder
National Natural Science Foundation of China
Publisher
Springer Science and Business Media LLC
Subject
Pharmaceutical Science,Applied Microbiology and Biotechnology,Biomedical Engineering,Molecular Medicine,Medicine (miscellaneous),Bioengineering
Cited by
82 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献