Single cell sequencing analysis identifies genetics-modulated ORMDL3+ cholangiocytes having higher metabolic effects on primary biliary cholangitis

Author:

Xiang Bingyu,Deng Chunyu,Qiu Fei,Li Jingjing,Li Shanshan,Zhang Huifang,Lin Xiuli,Huang Yukuan,Zhou Yijun,Su Jianzhong,Lu Mingqin,Ma YunlongORCID

Abstract

Abstract Background Primary biliary cholangitis (PBC) is a classical autoimmune disease, which is highly influenced by genetic determinants. Many genome-wide association studies (GWAS) have reported that numerous genetic loci were significantly associated with PBC susceptibility. However, the effects of genetic determinants on liver cells and its immune microenvironment for PBC remain unclear. Results We constructed a powerful computational framework to integrate GWAS summary statistics with scRNA-seq data to uncover genetics-modulated liver cell subpopulations for PBC. Based on our multi-omics integrative analysis, 29 risk genes including ORMDL3, GSNK2B, and DDAH2 were significantly associated with PBC susceptibility. By combining GWAS summary statistics with scRNA-seq data, we found that cholangiocytes exhibited a notable enrichment by PBC-related genetic association signals (Permuted P < 0.05). The risk gene of ORMDL3 showed the highest expression proportion in cholangiocytes than other liver cells (22.38%). The ORMDL3+ cholangiocytes have prominently higher metabolism activity score than ORMDL3 cholangiocytes (P = 1.38 × 10–15). Compared with ORMDL3 cholangiocytes, there were 77 significantly differentially expressed genes among ORMDL3+ cholangiocytes (FDR < 0.05), and these significant genes were associated with autoimmune diseases-related functional terms or pathways. The ORMDL3+ cholangiocytes exhibited relatively high communications with macrophage and monocyte. Compared with ORMDL3 cholangiocytes, the VEGF signaling pathway is specific for ORMDL3+ cholangiocytes to interact with other cell populations. Conclusions To the best of our knowledge, this is the first study to integrate genetic information with single cell sequencing data for parsing genetics-influenced liver cells for PBC risk. We identified that ORMDL3+ cholangiocytes with higher metabolism activity play important immune-modulatory roles in the etiology of PBC. Graphical Abstract

Funder

Scientific Research Foundation for Talents of Wenzhou Medical University

Publisher

Springer Science and Business Media LLC

Subject

Pharmaceutical Science,Applied Microbiology and Biotechnology,Biomedical Engineering,Molecular Medicine,Medicine (miscellaneous),Bioengineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3