Erythrocyte membrane with CLIPPKF as biomimetic nanodecoy traps merozoites and attaches to infected red blood cells to prevent Plasmodium infection

Author:

He Zhouqing,Yu Chuyi,Pan Ziyi,Li Xiaobo,Zhang Xiangxiang,Huang Qijing,Liao Xingcheng,Hu Jiaoting,Zeng Feng,Ru Li,Yu Wanlin,Xu Qin,Song Jianping,Liang JianmingORCID

Abstract

Abstract Background Malaria remains a serious threat to global public health. With poor efficacies of vaccines and the emergence of drug resistance, novel strategies to control malaria are urgently needed. Results We developed erythrocyte membrane-camouflaged nanoparticles loaded with artemether based on the growth characteristics of Plasmodium. The nanoparticles could capture the merozoites to inhibit them from repeatedly infecting normal erythrocytes, owing to the interactions between merozoites and heparin-like molecules on the erythrocyte membrane. Modification with a phosphatidylserine-targeting peptide (CLIPPKF) improved the drug accumulation in infected red blood cells (iRBCs) from the externalized phosphatidylserine induced by Plasmodium infection. In Plasmodium berghei ANKA strain (pbANKA)-infected C57BL/6 mice, the nanoparticles significantly attenuated Plasmodium-induced inflammation, apoptosis, and anemia. We observed reduced weight variation and prolonged survival time in pbANKA-challenged mice, and the nanoparticles showed good biocompatibility and negligible cytotoxicity. Conclusion Erythrocyte membrane-camouflaged nanoparticles loaded with artemether were shown to provide safe and effective protection against Plasmodium infection. Graphical Abstract

Funder

Open Research Fund of Key Laboratory of Smart Drug Delivery

Guangdong Basic and Applied Basic Research Foundation

Xinglin young scholar construction of high levels university projects of Guangzhou University of Chinese Medicine

Natural Science Foundation of China

Natural Science Foundation of Guangdong Province

Publisher

Springer Science and Business Media LLC

Subject

Pharmaceutical Science,Applied Microbiology and Biotechnology,Biomedical Engineering,Molecular Medicine,Medicine (miscellaneous),Bioengineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3