An end-to-end approach for single-cell infrared absorption spectroscopy of bacterial inclusion bodies: from AFM-IR measurement to data interpretation of large sample sets

Author:

Duverger Wouter,Tsaka Grigoria,Khodaparast Ladan,Khodaparast Laleh,Louros Nikolaos,Rousseau Frederic,Schymkowitz Joost

Abstract

Abstract Background Inclusion bodies (IBs) are well-known subcellular structures in bacteria where protein aggregates are collected. Various methods have probed their structure, but single-cell spectroscopy remains challenging. Atomic Force Microscopy-based Infrared Spectroscopy (AFM-IR) is a novel technology with high potential for the characterisation of biomaterials such as IBs. Results We present a detailed investigation using AFM-IR, revealing the substructure of IBs and their variation at the single-cell level, including a rigorous optimisation of data collection parameters and addressing issues such as laser power, pulse frequency, and sample drift. An analysis pipeline was developed tailored to AFM-IR image data, allowing high-throughput, label-free imaging of more than 3500 IBs in 12,000 bacterial cells. We examined IBs generated in Escherichia coli under different stress conditions. Dimensionality reduction analysis of the resulting spectra suggested distinct clustering of stress conditions, aligning with the nature and severity of the applied stresses. Correlation analyses revealed intricate relationships between the physical and morphological properties of IBs. Conclusions Our study highlights the power and limitations of AFM-IR, revealing structural heterogeneity within and between IBs. We show that it is possible to perform quantitative analyses of AFM-IR maps over a large collection of different samples and determine how to control for various technical artefacts.

Funder

Fonds Wetenschappelijk Onderzoek

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3