Gene therapy by virus-like self-spooling toroidal DNA condensates for revascularization of hindlimb ischemia

Author:

Wang Yue,Liu Jun,Tong Changgui,Li Lei,Cui Hongyang,Zhang Liuwei,Zhang Ming,Zhang Shijia,Zhou Kehui,Lan Xiabin,Chen Qixian,Zhao Yan

Abstract

AbstractPeripheral arterial diseases (PAD) have been reported to be the leading cause for limb amputations, and the current therapeutic strategies including antiplatelet medication or intervene surgery are reported to not clinically benefit the patients with high-grade PAD. To this respect, revascularization based on angiogenetic vascular endothelial growth factor (VEGF) gene therapy was attempted for the potential treatment of critical PAD. Aiming for transcellular delivery of VEGF-encoding plasmid DNA (pDNA), we proposed to elaborate intriguing virus-like DNA condensates, wherein the supercoiled rigid micrometer-scaled plasmid DNA (pDNA) could be regulated in an orderly fashion into well-defined nano-toroids by following a self-spooling process with the aid of cationic block copolymer poly(ethylene glycol)-polylysine at an extraordinary ionic strength (NaCl: 600 mM). Moreover, reversible disulfide crosslinking was proposed between the polylysine segments with the aim of stabilizing these intriguing toroidal condensates. Pertaining to the critical hindlimb ischemia, our proposed toroidal VEGF-encoding pDNA condensates demonstrated high levels of VEGF expression at the dosage sites, which consequently contributed to the neo-vasculature (the particularly abundant formation of micro-vessels in the injected hindlimb), preventing the hindlimb ischemia from causing necrosis at the extremities. Moreover, excellent safety profiles have been demonstrated by our proposed toroidal condensates, as opposed to the apparent immunogenicity of the naked pDNA. Hence, our proposed virus-like DNA condensates herald potentials as gene therapy platform in persistent expressions of the therapeutic proteins, and might consequently be highlighted in the management of a variety of intractable diseases.

Funder

Training Program of the National Natural Science Foundation of China

Liaoning Livelihood of the People Science and Technology

Medical Health Science and Technology Project of Zhejiang Provincial Health Commission

National Outstanding Youth Science Fund Project of National Natural Science Foundation of China

National Key Research and Development Program of China

Shenyang Science and Technology Program

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3