Polymalic acid for translational nanomedicine

Author:

Huang Xing,Xu Liusheng,Qian Hui,Wang Xinghuan,Tao Zhimin

Abstract

AbstractWith rich carboxyl groups in the side chain, biodegradable polymalic acid (PMLA) is an ideal delivery platform for multifunctional purposes, including imaging diagnosis and targeting therapy. This polymeric material can be obtained via chemical synthesis, or biological production where L-malic acids are polymerized in the presence of PMLA synthetase inside a variety of microorganisms. Fermentative methods have been employed to produce PMLAs from biological sources, and analytical assessments have been established to characterize this natural biopolymer. Further functionalized, PMLA serves as a versatile carrier of pharmaceutically active molecules at nano scale. In this review, we first delineate biosynthesis of PMLA in different microorganisms and compare with its chemical synthesis. We then introduce the biodegradation mechanism PMLA, its upscaled bioproduction together with characterization. After discussing advantages and disadvantages of PMLA as a suitable delivery carrier, and strategies used to functionalize PMLA for disease diagnosis and therapy, we finally summarize the current challenges in the biomedical applications of PMLA and envisage the future role of PMLA in clinical nanomedicine. Graphical Abstract

Publisher

Springer Science and Business Media LLC

Subject

Pharmaceutical Science,Applied Microbiology and Biotechnology,Biomedical Engineering,Molecular Medicine,Medicine (miscellaneous),Bioengineering

Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3