Author:
Zhang Long,Niu Wen,Lin Yuyao,Ma Junping,Leng Tongtong,Cheng Wei,Wang Yidan,Wang Min,Ning Jingya,Yang Shuanying,Lei Bo
Abstract
AbstractLarge-scale skin damage brings potential risk to patients, such as imbalance of skin homeostasis, inflammation, fluid loss and bacterial infection. Moreover, multidrug resistant bacteria (MDRB) infection is still a great challenge for skin damage repair. Herein, we developed an injectable self-healing bioactive nanoglass hydrogel (FABA) with robust antibacterial and anti-inflammatory ability for normal and Methicillin-resistant Staphylococcus aureus (MRSA) infected skin wound repair. FABA hydrogel was fabricated facilely by the self-crosslinking of F127-CHO (FA) and alendronate sodium (AL)-decorated Si-Ca-Cu nanoglass (BA). FABA hydrogel could significantly inhibit the growth of Staphylococcus aureus, Escherichia coli and MRSA in vitro, while showing good cytocompatibility and hemocompatibility. In addition, FABA hydrogel could inhibit the expression of proinflammatory factor TNF-α and enhance the expression of anti-inflammatory factor IL-4/ IL-10. Based on its versatility, FABA hydrogel could complete wound closure efficiently (75% at day 3 for normal wound, 70% at day 3 for MRSA wound), which was almost 3 times higher than control wound, which was related with the decrease of inflammatory factor in early wound. This work suggested that FABA hydrogel could be a promising dressing for acute and MRSA-infected wound repair.
Graphical Abstract
Funder
China Postdoctoral Science Foundation
Fundamental Research Funds for the Central Universities
Publisher
Springer Science and Business Media LLC
Subject
Pharmaceutical Science,Applied Microbiology and Biotechnology,Biomedical Engineering,Molecular Medicine,Medicine (miscellaneous),Bioengineering
Cited by
9 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献