Author:
Liu Siliang,Xu Angao,Gao Yanfei,Xie Yue,Liu Zhipeng,Sun Meiling,Mao Hua,Wang Xinying
Abstract
Abstract
Background
Graphene oxide (GO), a novel carbon-based nanomaterial, has promising applications in biomedicine. However, it induces potential cytotoxic effects on the gastrointestinal (GI) tract cells, and these effects have been largely uncharacterized. The present study aimed to explore the toxic effects of GO on the intestinal tract especially under pre-existing inflammatory conditions, such as inflammatory bowel disease (IBD), and elucidate underlying mechanisms.
Results
Our findings indicated that oral gavage of GO worsened acute colitis induced by 2.5% dextran sodium sulfate (DSS) in mice. In vitro, GO exacerbated DSS-induced inflammation and apoptosis in the FHC cell line, an ideal model of intestinal epithelial cells (IECs). Further, the potential mechanism underlying GO aggravated mice colitis and cell inflammation was explored. Our results revealed that GO treatment triggered apoptosis in FHC cells through the activation of reactive oxygen species (ROS)/AMP-activated protein kinase (AMPK)/p53 pathway, as evidenced by the upregulation of cytochrome c (Cytc), Bax, and cleaved caspase-3 (c-cas3) and the downregulation of Bcl-2. Interestingly, pretreatment with an antioxidant, N-acetyl-L-cysteine, and a specific inhibitor of AMPK activation, Compound C (Com.C), effectively inhibited GO-induced apoptosis in FHC cells.
Conclusions
Our data demonstrate that GO-induced IECs apoptosis via ROS/AMPK/p53 pathway activation accounts for the exacerbation of colitis in vivo and aggravation of inflammation in vitro. These findings provide a new insight into the pathogenesis of IBD induced by environmental factors. Furthermore, our findings enhance our understanding of GO as a potential environmental toxin, which helps delineate the risk of exposure to patients with disturbed intestinal epithelial barrier/inflammatory disorders such as IBD.
Funder
National Natural Science Foundation of China
Publisher
Springer Science and Business Media LLC
Subject
Pharmaceutical Science,Applied Microbiology and Biotechnology,Biomedical Engineering,Molecular Medicine,Medicine (miscellaneous),Bioengineering
Reference60 articles.
1. Baumgart DC, Sandborn WJ. Inflammatory bowel disease: clinical aspects and established and evolving therapies. Lancet. 2007;369:1641–57.
2. Malekzadeh MM, Vahedi H, Gohari K, Mehdipour P, Sepanlou SG, Ebrahimi Daryani N, et al. Emerging epidemic of inflammatory bowel disease in a middle income country: a nation-wide study from Iran. Arch Iran Med. 2016;19:2–15.
3. Lakatos L, Mester G, Erdelyi Z, Balogh M, Szipocs I, Kamaras G, et al. Striking elevation in incidence and prevalence of inflammatory bowel disease in a province of western Hungary between 1977–2001. World J Gastroenterol. 2004;10:404–9.
4. Sun X, Liu Z, Welsher K, Robinson JT, Goodwin A, Zaric S, et al. Nano-graphene oxide for cellular imaging and drug delivery. Nano Res. 2008;1:203–12.
5. Hussien NA, Isiklan N, Turk M. Pectin-conjugated magnetic graphene oxide nanohybrid as a novel drug carrier for paclitaxel delivery. Artif Cells Nanomed Biotechnol. 2018;46:264–73.
Cited by
29 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献