Overcoming chemotherapy resistance using pH-sensitive hollow MnO2 nanoshells that target the hypoxic tumor microenvironment of metastasized oral squamous cell carcinoma

Author:

Zhou Zhi-hang,Liang Si-yuan,Zhao Tong-chao,Chen Xu-zhuo,Cao Xian-kun,Qi Ming,Huang Ying-ying,Ju Wu-tong,Yang Meng,Zhu Dong-wang,Pang Yi-chuan,Zhong Lai-ping

Abstract

Abstract Background Smart nanoscale drug delivery systems that target acidic tumor microenvironments (TME) could offer controlled release of drugs and modulate the hypoxic TME to enhance cancer therapy. The majority of previously reported MnO2 nanostructures are nanoparticles, nanosheets, or nanocomposites incorporated with other types of nanoparticles, which may not offer the most effective method for drug loading or for the controlled release of therapeutic payloads. Previous studies have designed MnO2 nanoshells that achieve tumor-specific and enhanced combination therapy for localized advanced cancer. However, the therapeutic effect of MnO2 nanoshells on metastatic cancer is still uncertain. Result Here, intelligent “theranostic” platforms were synthesized based on hollow mesoporous MnO2 (H-MnO2) nanoshells that were loaded with chemotherapy agents docetaxel and cisplatin (TP) to form H-MnO2-PEG/TP nanoshells, which were designed to alleviate tumor hypoxia, attenuate angiogenesis, trigger the dissolution of Mn2+, and synergize the efficacy of first-class anticancer chemotherapy. The obtained H-MnO2-PEG/TP nanoshells decomposed in the acidic TME, releasing the loaded drugs (TP) and simultaneously attenuated tumor hypoxia and hypoxia-inducible factor-1α (HIF-1α) expression by inducing endogenous tumor hydrogen peroxide (H2O2) decomposition. In vitro experiments showed that compared with the control group, the proliferation, colony formation and migration ability of CAL27 and SCC7 cells were significantly reduced in H-MnO2-PEG/TP group, while cell apoptosis was enhanced, and the expression of hypoxia-inducible factor-1α(HIF-1α) was down-regulated. In vivo experiments showed that tumor to normal organ uptake ratio (T/N ratio) of mice in H-MnO2-PEG/TP group was significantly higher than that in TP group alone (without the nanoparticle), and tumor growth was partially delayed. In the H-MnO2-PEG/TP treatment group, HE staining showed that most of the tumor cells were severely damaged, and TUNEL assay showed cell apoptosis was up-regulated. He staining of renal and liver sections showed no obvious fibrosis, necrosis or hypertrophy, indicating good biosafety. Fluorescence staining showed that HIF-1α expression was decreased, suggesting that the accumulation of MnO2 in the tumor caused the decomposition of H2O2 into O2 and alleviated the hypoxia of the tumor. Conclusion In conclusion, a remarkable in vivo and in vitro synergistic therapeutic effect is achieved through the combination of TP chemotherapy, which simultaneously triggered a series of antiangiogenic and oxidative antitumor reactions. Graphic abstract

Funder

National Natural Science Foundation of China

Publisher

Springer Science and Business Media LLC

Subject

Pharmaceutical Science,Applied Microbiology and Biotechnology,Biomedical Engineering,Molecular Medicine,Medicine (miscellaneous),Bioengineering

Cited by 33 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3