Transplantation of active nucleus pulposus cells with a keep-charging hydrogel microsphere system to rescue intervertebral disc degeneration

Author:

Tang Yingchuang,Zhang Kai,Zhou Hongyou,Zhang Chenchen,Liu Zixiang,Chen Hao,Li Hanwen,Chen Kangwu

Abstract

Abstract Background Cell transplantation has been demonstrated as a promising approach in tissue regeneration. However, the reactive oxygen species (ROS) accumulation and inflammation condition establish a harsh microenvironment in degenerated tissue, which makes the transplanted cells difficult to survive. Methods In this study, we constructed a keep-charging hydrogel microsphere system to enable cells actively proliferate and function in the degenerated intervertebral disc. Specifically, we combined Mg2+ to histidine-functionalized hyaluronic acid (HA-His-Mg2+) through coordination reaction, which was further intercrossed with GelMA to construct a double-network hydrogel microsphere (GelMA/HA-His-Mg2+, GHHM) with microfluidic methods. In vitro, the GHHM loaded with nucleus pulposus cells (GHHM@NPCs) was further tested for its ability to promote NPCs proliferation and anti-inflammatory properties. In vivo, the ability of GHHM@NPCs to promote regeneration of NP tissue and rescue intervertebral disc degeneration (IVDD) was evaluated by the rat intervertebral disc acupuncture model. Results The GHHM significantly enhanced NPCs adhesion and proliferation, providing an ideal platform for the NPCs to grow on. The loaded NPCs were kept active in the degenerative intervertebral disc microenvironment as charged by the Mg2+ in GHHM microspheres to effectively support the loaded NPCs to reply against the ROS-induced inflammation and senescence. Moreover, we observed that GHHM@NPCs effectively alleviated nucleus pulposus degeneration and promoted its regeneration in the rat IVDD model. Conclusion In conclusion, we constructed a keep charging system with a double-network hydrogel microsphere as a framework and Mg2+ as a cell activity enhancer, which effectively maintains NPCs active to fight against the harsh microenvironment in the degenerative intervertebral disc. The GHHM@NPCs system provides a promising approach for IVDD management. Graphical Abstract

Funder

National Natural Science Foundation of China

Natural Science Foundation of Jiangsu Province

Suzhou Gusu Health Talent Plan talent research project

Publisher

Springer Science and Business Media LLC

Subject

Pharmaceutical Science,Applied Microbiology and Biotechnology,Biomedical Engineering,Molecular Medicine,Medicine (miscellaneous),Bioengineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3