Polyurethane-based nanofibrous mat containing porphyrin with photosensitivity and bactericidal properties can promote cutaneous tissue healing in rats

Author:

Saghebasl Solmaz,Amini Hassan,Nobakht Abbas,Haiaty Sanya,Bagheri Hesam Saghaei,Hasanpour Parisa,Milani Morteza,Saghati Sepideh,Naturi Ozra,Farhadi Mehrdad,Rahbarghazi Reza

Abstract

AbstractThe regeneration of cutaneous tissue is one of the most challenging issues in human regenerative medicine. To date, several studies have been done to promote cutaneous tissue healing with minimum side effects. The healing potential of polyurethane (PU)/Poly (caprolactone)–poly (ethylene glycol)–poly (caprolactone) (PCEC)/chitosan (CS) (PCS) nanofibrous mat with cationic photosensitizer meso tetrakis (N-methyl pyridinium-4-yl) porphyrin tetratosylate salt (TMP) was examined. The CS tripolyphosphate nanoparticles (CSNPs) were prepared and loaded by TMP to provide an efficient drug release system (TMPNPs) for delivery of TMP to promote wound healing. In in vitro setting, parameters such as bactericidal effects, cytocompatibility, and hemolytic effects were examined. The healing potential of prepared nanofibrous mats was investigated in a rat model of full-thickness cutaneous injury. PCS/TMP/TMPNPs nanofibers can efficiently release porphyrin in the aqueous phase. The addition of TMPNPs and CS to the PU backbone increased the hydrophilicity, degradation, and reduced mechanical properties. The culture of human fetal foreskin fibroblasts (HFFF2) on PCS/TMP/TMPNPs scaffold led to an increased survival rate and morphological adaptation analyzed by MTT and SEM images. Irradiation with a red laser (635 nm, 3 J/cm2) for the 30 s reduced viability of S. aureus and E. Coli bacteria plated on PCS/TMP and PCS/TMP/TMPNPs nanofibrous mats compared to PU/PCEC (PC) and PU/PCEC/CS (PCS) groups, indicating prominent antibacterial effects of PCS/TMP and PCS/TMP/TMPNPs nanofibrous (p < 0.05). Data indicated that PCS/TMP/TMPNPs mat enhanced healing of the full-thickness excisional wound in a rat model by the reduction of inflammatory response and fibrotic changes compared to the PC, and PCS groups (p < 0.05). Immunofluorescence imaging indicated that levels of Desmoglein were increased in rats that received PCS/TMP/TMPNPs compared to the other groups. It is found that a PU-based nanofibrous mat is an appropriate scaffold to accelerate the healing of injured skin. Graphical abstract

Funder

Tabriz University of Medical Sciences

Publisher

Springer Science and Business Media LLC

Subject

Pharmaceutical Science,Applied Microbiology and Biotechnology,Biomedical Engineering,Molecular Medicine,Medicine (miscellaneous),Bioengineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3