Author:
Zhou Zheng,Bu Ziheng,Wang Shiqiang,Yu Jianing,Liu Wei,Huang Junchao,Hu Jianhai,Xu Sudan,Wu Peng
Abstract
AbstractDecellularized extracellular matrix hydrogel (ECM hydrogel), a natural material derived from normal tissue with unique biocompatibility properties, is widely used for tissue repair. However, there are still problems such as poor biological activity and insufficient antimicrobial property. To overcome these drawbacks, fibroblast growth factor 2 (FGF 2) containing exosome (exoFGF 2) was prepared to increase the biological activity. Furthermore, the antimicrobial capacity of ECM hydrogel was optimised by using copper ions as a ligand-bonded cross-linking agent. The decellularized extracellular matrix hydrogel, intricately cross-linked with copper ions through ligand bonds and loaded with FGF 2 containing exosome (exoFGF 2@ECM/Cu2+ hydrogel), has demonstrated exceptional biocompatibility and antimicrobial properties. In vitro, exoFGF 2@ECM/Cu2+ hydrogel effectively promoted cell proliferation, migration, antioxidant and inhibited bacterial growth. In vivo, the wound area of rat treated with exoFGF 2@ECM/Cu2+ hydrogels were significantly smaller than that of other groups at Day 5 (45.24% ± 3.15%), Day 10 (92.20% ± 2.31%) and Day 15 (95.22% ± 1.28%). Histological examination showed that exoFGF 2@ECM/Cu2+ hydrogels promoted angiogenesis and collagen deposition. Overall, this hydrogel has the potential to inhibit bacterial growth and effectively promote wound healing in a variety of clinical applications.
Funder
the Youth Program of Medical Engineering Cross Research Fund of Shanghai Jiaotong University
Shanghai Municipal Science and Technology Commission Natural Science Fund
Publisher
Springer Science and Business Media LLC