GSK-3β suppression upregulates Gli1 to alleviate osteogenesis inhibition in titanium nanoparticle-induced osteolysis

Author:

Wang Qing,Zhang Wei,Peng Xiaole,Tao Yunxia,Gu Ye,Li Wenming,Liang Xiaolong,Wang Liangliang,Wu Zerui,Wang Tianhao,Zhang Haifeng,Liu Xin,Xu Yaozeng,Liu Yu,Zhou Jun,Geng Dechun

Abstract

AbstractWear particle-induced periprosthetic osteolysis (PPO) have become a major reason of joint arthroplasty failure and secondary surgery following joint arthroplasty and thus pose a severe threat to global public health. Therefore, determining how to effectively suppress particle-induced PPO has become an urgent problem. The pathological mechanism involved in the PPO signaling cascade is still unclear. Recently, the interaction between osteogenic inhibition and wear particles at the implant biological interface, which has received increasing attention, has been revealed as an important factor in pathological process. Additionally, Hedgehog (Hh)-Gli1 is a crucial signaling cascade which was regulated by multiple factors in numerous physiological and pathological process. It was revealed to exert a crucial part during embryonic bone development and metabolism. However, whether Hh-Gli1 is involved in wear particle-induced osteogenic inhibition in PPO remains unknown. Our present study explored the mechanism by which the Hh-Gli1 signaling cascade regulates titanium (Ti) nanoparticle-induced osteolysis. We found that Hh-Gli1 signaling was dramatically downregulated upon Ti particle treatment. Mechanistically, glycogen synthesis kinase 3β (GSK-3β) activation was significantly increased in Ti particle-induced osteogenic inhibition via changes in GSK-3β phosphorylation level and was found to participate in the posttranslational modification and degradation of the key transcription factor Gli1, thus decreasing the accumulation of Gli1 and its translocation from the cytoplasm to the nucleus. Collectively, these findings suggest that the Hh-Gli1 signaling cascade utilizes a GSK3β-mediated mechanism and may serve as a rational new therapeutic target against nanoparticle-induced PPO. Graphical Abstract

Funder

National Natural Science Foundation of China

the Young Medical Talents of Jiangsu Province

Natural Science Foundation of Jiangsu Province

the Priority Academic Program Development of Jiangsu Higher Education Institutions

Special Project of Diagnosis and Treatment Technology for Key Clinical Diseases in Suzhou

Jiangsu Agricultural Science and Technology Independent Innovation Fund

the Application Fundamental Research Program of Suzhou City

the Colleges and Universities Natural Science Foundation in Jiangsu Province

Publisher

Springer Science and Business Media LLC

Subject

Pharmaceutical Science,Applied Microbiology and Biotechnology,Biomedical Engineering,Molecular Medicine,Medicine (miscellaneous),Bioengineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3