Edible CaCO3 nanoparticles stabilized Pickering emulsion as calcium‐fortified formulation

Author:

Guo Xiaoming,Li Xiaoying,Chan Leung,Huang Wei,Chen TianfengORCID

Abstract

Abstract Background Nanoparticles assembled from food-grade calcium carbonate have attracted attention because of their biocompatibility, digestibility, particle and surface features (such as size, surface area, and partial wettability), and stimuli-responsiveness offered by their acid-labile nature. Results Herein, a type of edible oil-in-water Pickering emulsion was structured by calcium carbonate nanoparticles (CaCO3 NPs; mean particle size: 80 nm) and medium-chain triglyceride (MCT) for delivery of lipophilic drugs and simultaneous oral supplementation of calcium. The microstructure of the as-made CaCO3 NPs stabilized Pickering emulsion can be controlled by varying the particle concentration (c) and oil volume fraction (φ). The emulsification stabilizing capability of the CaCO3 NPs also favored the formation of high internal phase emulsion at a high φ of 0.7–0.8 with excellent emulsion stability at room temperature and at 4 °C, thus protecting the encapsulated lipophilic bioactive, vitamin D3 (VD3), against degradation. Interestingly, the structured CaCO3 NP-based Pickering emulsion displayed acid-trigged demulsification because of the disintegration of the CaCO3 NPs into Ca2+ in a simulated gastric environment, followed by efficient lipolysis of the lipid in simulated intestinal fluid. With the encapsulation and delivery of the emulsion, VD3 exhibited satisfying bioavailability after simulated gastrointestinal digestion. Conclusions Taken together, the rationally designed CaCO3 NP emulsion system holds potential as a calcium-fortified formulation for food, pharmaceutical and biomedical applications.

Funder

Natural Science Foundation of China

Major Program for Tackling Key Problems of Industrial Technology in Guangzhou

China Postdoctoral Science Foundation

Dedicated Fund for Promoting High-Quality Marine Economic Development in Guangdong Province

Guangzhou Key Laboratory of Molecular and Functional Imaging for Clinical Translation

Innovation Team Project in Guangdong Colleges and Universities

Opening fund of Hubei Key Laboratory of Bioinorganic Chemistry & Materia Medica

the Open Fund of the Key Laboratory of Functional Molecular Engineering of Guangdong Province

Pearl River Nova Program of Guangzhou

Applications and K. C. Wong Education Foundation

Publisher

Springer Science and Business Media LLC

Subject

Pharmaceutical Science,Applied Microbiology and Biotechnology,Biomedical Engineering,Molecular Medicine,Medicine (miscellaneous),Bioengineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3