Abstract
Abstract
Background
Most of the natural extracellular matrix (ECM) is a three-dimensional (3D) network structure of micro/nanofibers for cell adhesion and growth of 3D. Electrospun fibers distinctive mimicked 2D ECM, however, it is impossible to simulate 3D ECM because of longitudinal collapse of continuous micro/nanofibers. Herein, 3D electrospun micro/nano-fibrous sponge was fabricated via electrospinning, homogenization, shaping and thermal crosslinking for 3D tissue regeneration of cells and vascular.
Results
Fibrous sponge exhibited high porosity, water absorption and compression resilience and no chemical crosslinked agent was used in preparation process. In vitro studies showed that the 3D short fiber sponge provided an oxygen-rich environment for cell growth, which was conducive to the 3D proliferation and growth of HUVECs, stimulated the expression of VEGF, and well promoted the vascularization of HUVECs. In vivo studies showed that the 3D short fiber sponges had a good 3D adhesion to the chronic wound of diabetes in rats. Furthermore, 3D short fibrous sponges were better than 2D micro/nanofiber membranes in promoting the repair of diabetic full-thickness skin defects including wound healing, hair follicle regeneration, angiogenesis, collagen secretion.
Conclusion
Therefore, electrospun short fibrous sponges are special candidates for mimicking the 3D ECM and promoting 3D regeneration of tissue.
Graphic Abstract
Funder
Shanghai Municipal Health Commission
National Key Research and Development Program of China
National Natural Science Foundation of China
Shanghai Jiao Tong University “Medical and Research” Program
Science and Technology Commission of Shanghai Municipality
Shanghai Municipal Education Commission—Gaofeng Clinical Medicine Grant Support
Projects of medical and health technology development program in Shandong province
China Postdoctoral Science Foundation
Publisher
Springer Science and Business Media LLC
Subject
Pharmaceutical Science,Applied Microbiology and Biotechnology,Biomedical Engineering,Molecular Medicine,Medicine (miscellaneous),Bioengineering
Cited by
69 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献