Author:
Su Wenting,Liu Congyan,Jiang Xi,Lv Yanli,Chen Qin,Shi Jiachen,Zhang Huangqin,Ma Qiuling,Ge Chang,Kong Fei,Li Xiaoqi,Liu Yuping,Chen Yan,Qu Ding
Abstract
AbstractSustained retina drug delivery and rational drug combination are considered essential for enhancing the efficacy of therapy for wet age-related macular degeneration (wAMD) due to the conservative structure of the posterior ocular segment and the multi-factorial pathological mechanism. Designing a drug co-delivery system that can simultaneously achieve deep penetration and long-lasting retention in the vitreous is highly desired, yet remains a huge challenge. In this study, we fabricated Bor/RB-M@TRG as an intravitreal-injectable hydrogel depot for deep penetration into the posterior ocular segment and long-lasting distribution in the retinal pigment epithelium (RPE) layer. The Bor/RB-M@TRG consisted of borneol-decorated rhein and baicalein-coloaded microemulsions (Bor/RB-M, the therapy entity) and a temperature-responsive hydrogel matrix (the intravitreal depot). Bor/RB-M exhibited the strongest in vitro anti-angiogenic effects among all the groups studied, which is potentially associated with improved cellular uptake, as well as the synergism of rhein and baicalein, acting via anti-angiogenic and anti-oxidative stress pathways, respectively. Importantly, a single intravitreal (IVT) injection with Bor/RB-M@TRG displayed significant inhibition against the CNV of wAMD model mice, compared to all other groups. Particularly, coumarin-6-labeled Bor/RB-M@TRG (Bor/C6-M@TRG) could not only deeply penetrate into the retina but also stably accumulate in the RPE layer for at least 14 days. Our design integrates the advantages of borneol-decorated microemulsions and hydrogel depots, offering a promising new approach for clinically-translatable retinal drug delivery and synergistic anti-wAMD treatment.
Funder
General Project of Jiangsu Provincial Health Commission
National Natural Science Foundation of China
the Open Project of Chinese Materia Medica First-Class Discipline of Nanjing University of Chinese Medicine
the Six Talent Peak Project of Jiangsu Province
“333 project” of Jiangsu Province
Natural Science Foundation of Jiangsu Province of China
Publisher
Springer Science and Business Media LLC
Subject
Pharmaceutical Science,Applied Microbiology and Biotechnology,Biomedical Engineering,Molecular Medicine,Medicine (miscellaneous),Bioengineering
Cited by
5 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献