Preclinical safety and hepatotoxicity evaluation of biomineralized copper sulfide nanoagents

Author:

Xia Ya-Nan,Zu He,Guo Haoxiang,Jiang Tianyan,Yang Siqi,Yu Huan,Zhang Shaodian,Ding Heng,Li Xiaoyu,Wang Yangyun,Wang Yong,Zhang Leshuai W.

Abstract

AbstractAlbumin-biomineralized copper sulfide nanoparticles (Cu2−xS NPs) have attracted much attention as an emerging phototheranostic agent due to their advantages of facile preparation method and high biocompatibility. However, comprehensive preclinical safety evaluation is the only way to meet its further clinical translation. We herein evaluate detailedly the safety and hepatotoxicity of bovine serum albumin-biomineralized Cu2−xS (BSA@Cu2−xS) NPs with two different sizes in rats. Large-sized (LNPs, 17.8 nm) and small-sized (SNPs, 2.8 nm) BSA@Cu2−xS NPs with great near-infrared absorption and photothermal conversion efficiency are firstly obtained. Seven days after a single-dose intravenous administration, SNPs distributed throughout the body are cleared primarily through the feces, while a large amount of LNPs remained in the liver. A 14-day subacute toxicity study with a 28-day recovery period are conducted, showing long-term hepatotoxicity without recovery for LNPs but reversible toxicity for SNPs. Cellular uptake studies indicate that LNPs prefer to reside in Kupffer cells, leading to prolonged and delayed hepatotoxicity even after the cessation of NPs administration, while SNPs have much less Kupffer cell uptake. RNA-sequencing analysis for gene expression indicates that the inflammatory pathway, lipid metabolism pathway, drug metabolism-cytochrome P450 pathway, cholesterol/bile acid metabolism pathway, and copper ion transport/metabolism pathway are compromised in the liver by two sizes of BSA@Cu2−xS NPs, while only SNPs show a complete recovery of altered gene expression after NPs discontinuation. This study demonstrates that the translational feasibility of small-sized BSA@Cu2−xS NPs as excellent nanoagents with manageable hepatotoxicity. Graphical Abstract

Funder

National Natural Science Foundation of China

Publisher

Springer Science and Business Media LLC

Subject

Pharmaceutical Science,Applied Microbiology and Biotechnology,Biomedical Engineering,Molecular Medicine,Medicine (miscellaneous),Bioengineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3