Multifunctional nanoparticles co-loaded with Adriamycin and MDR-targeting siRNAs for treatment of chemotherapy-resistant esophageal cancer

Author:

Zhang Xiangyang,Wang Min,Feng Junyi,Qin Bin,Zhang Chenglin,Zhu Chengshen,Liu Wentao,Wang Yaohe,Liu Wei,Huang Lei,Lu Shuangshuang,Wang ZhiminORCID

Abstract

AbstractThe development of multidrug resistance (MDR) during cancer chemotherapy is a major challenge in current cancer treatment strategies. Numerous molecular mechanisms, including increased drug efflux, evasion of drug-induced apoptosis, and activation of DNA repair mechanisms, can drive chemotherapy resistance. Here we have identified the major vault protein (MVP) and the B-cell lymphoma-2 (BCL2) gene as two potential factors driving MDR in esophageal squamous cell carcinoma (ESCC). We have designed a novel and versatile self-assembling nanoparticle (NP) platform on a multifunctional carboxymethyl chitosan base to simultaneously deliver Adriamycin, and siRNAs targeting MVP and BCL2 (CEAMB NPs), thus reducing drug efflux and promoting apoptosis of esophageal cancer cells. To achieve effective delivery to tumor tissues and inhibit tumor growth in vivo, carboxymethyl chitosan was engineered to contain multiple histidines for enhanced cytosol delivery, cholesterol for improved self-assembly, and epidermal growth factor receptor (EGFR) antibodies to target cancer cells. Our results indicate that these nanoparticles are efficiently synthesized with the desired chemical composition to self-assemble into cargo-containing NPs. Furthermore, we have shown that the synthesized NPs will successfully inhibit cancer cells growth and tumor development when delivered to cultured ESCC cells or to in vivo mouse xenograft models. Our engineered NPs offer a potential novel platform in treating various types of chemotherapy-resistant tumors. Graphical Abstract

Funder

the Science and Technology Research Key Project of the Henan Science and Technology Commission

Publisher

Springer Science and Business Media LLC

Subject

Pharmaceutical Science,Applied Microbiology and Biotechnology,Biomedical Engineering,Molecular Medicine,Medicine (miscellaneous),Bioengineering

Cited by 20 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3