The effects of extracellular vesicles derived from Krüppel-Like Factor 2 overexpressing endothelial cells on the regulation of cardiac inflammation in the dilated cardiomyopathy

Author:

Zhang Wenfeng,Chen Ziwei,Qiao Shuaihua,Chen Siyuan,Zheng Hongyan,Wei Xuan,Li Qiaoling,Xu Biao,Huang WeiORCID

Abstract

Abstract Background Dilated cardiomyopathy (DCM) is one of the common causes of heart failure. Myocardial injury triggers an inflammatory response and recruits immune cells into the heart. High expression of Krüppel-like factor 2 (KLF2) in endothelial cells (ECs) potentially exerts an anti-inflammatory effect. However, the role of extracellular vesicles (EVs) from KLF2-overexpressing ECs (KLF2-EVs) in DCM remains unclear. Methods and results EVs were separated from the supernatant of KLF2-overexpressing ECs by gradient centrifugation. Mice were repeatedly administered low-dose doxorubicin (DOX) and then received KLF2-EVs through an intravenous injection. Treatment with KLF2-EVs prevented doxorubicin-induced left ventricular dysfunction and reduced the recruitment of Ly6high Mo/Mø in the myocardium. We used flow cytometry to detect Ly6high monocytes in bone marrow and spleen tissues and to elucidate the mechanisms underlying this beneficial effect. KLF2-EVs increased the retention of Ly6Chigh monocytes in the bone marrow but not in the spleen tissue. KLF2-EVs also significantly downregulated C–C chemokine receptor 2 (CCR2) protein expression in cells from the bone marrow. Conclusions EVs derived from KLF2-overexpressing ECs reduced cardiac inflammation and ameliorated left ventricular dysfunction in DCM mice by targeting the CCR2 protein to inhibit Ly6Chigh monocyte mobilization from the bone marrow. Graphical Abstract

Publisher

Springer Science and Business Media LLC

Subject

Pharmaceutical Science,Applied Microbiology and Biotechnology,Biomedical Engineering,Molecular Medicine,Medicine (miscellaneous),Bioengineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3