Author:
Zhang Rui,Li Dan,Zhao Ruibo,Luo Dandan,Hu Yeting,Wang Shengyan,Zhuo Xiaolu,Iqbal M. Zubair,Zhang Han,Han Qianqian,Kong Xiangdong
Abstract
Abstract
Background
Gold nanoparticles (GNPs) have been extensively recognized as an active candidate for a large variety of biomedical applications. However, the clinical conversion of specific types of GNPs has been hindered due to their potential liver toxicity. The origin of their hepatotoxicity and the underlying key factors are still ambiguous. Because the size, shape, and surfactant of GNPs all affect their properties and cytotoxicity. An effective and sensitive platform that can provide deep insights into the cause of GNPs’ hepatotoxicity in vitro is therefore highly desired.
Methods
Here, hepatocyte organoid models (Hep-orgs) were constructed to evaluate the shape-dependent hepatotoxicity of GNPs. Two types of GNPs with different nanomorphology, gold nanospheres (GNSs) and spiny gold nanobranches (GNBs), were synthesized as the representative samples. Their shape-dependent effects on mice Hep-orgs’ morphology, cellular cytoskeletal structure, mitochondrial structure, oxidative stress, and metabolism were carefully investigated.
Results
The results showed that GNBs with higher spikiness and tip curvature exhibited more significant cytotoxicity compared to the rounded GNSs. The spike structure of GNBs leads to a mitochondrial damage, oxidative stress, and metabolic disorder in Hep-orgs. Meanwhile, similar trends can be observed in HepG2 cells and mice models, demonstrating the reliability of the Hep-orgs.
Conclusions
Hep-orgs can serve as an effective platform for exploring the interactions between GNPs and liver cells in a 3D perspective, filling the gap between 2D cell models and animal models. This work further revealed that organoids can be used as an indispensable tool to rapidly screen and explore the toxic mechanism of nanomaterials before considering their biomedical functionalities.
Funder
the National Natural Science Foundation of China
the Key Research and Development Program of Zhejiang Province
the Research Initiation Fund Project from Zhejiang Sci-Tech University
the Zhejiang International Science and Technology Cooperation Project
Publisher
Springer Science and Business Media LLC
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献