Dual-loaded nano pesticide system based on industrial grade scaleable carrier materials with combinatory efficacy and improved safety

Author:

Li Ningjun,Cui Jianxia,Zhao Jianjiang,An Changcheng,Wei Zheng,Shen Yue,Sun Changjiao,Wang Chong,Zhan Shenshan,Li Xingye,Wang Anqi,Luo Dan,Wang Yan

Abstract

AbstractRepeated and widespread use of single chemical pesticides raises concerns about efficiency and safety, developing multi-component synergistic pesticides provides a new route for efficient control of diseases. Most commercial compound formulations are open systems with non-adjustable released rates, resulting in a high frequency of applications. Meanwhile, although nano pesticide delivery systems constructed with different carrier materials have been extensively studied, realizing their actual scale-up production still has important practical significance due to the large-scale field application. In this study, a boscalid and pyraclostrobin dual-loaded nano pesticide system (BPDN) was constructed with industrial-grade carrier materials to facilitate the realization of large-scale production. The optimal industrial-scale preparation mechanism of BPDN was studied with surfactants as key factors. When agricultural emulsifier No.600 and polycarboxylate are used as the ratio of 1:2 in the preparation process, the BPDN has a spherical structure with an average size of 270 nm and exhibits superior physical stability. Compared with commercial formulation, BPDN maintains rate-stabilized release up to 5 times longer, exhibits better dispersion and spreading performance on foliar, has more than 20% higher deposition amounts, and reduces loss. A single application of BPDN could efficiently control tomato gray mold during the growing period of tomatoes due to extended duration and combinatory effectiveness, reducing two application times and labor costs. Toxicology tests on various objects systematically demonstrated that BPDN has improved safety for HepG2 cells, and nontarget organism earthworms. This research provides insight into creating safe, efficient, and environmentally friendly pesticide production to reduce manual operation times and labor costs. Accompanied by production strategies that can be easily scaled up industrially, this contributes to the efficient use of resources for sustainable agriculture.

Funder

National Key R&D Program of China

Innovation Program of Chinese Academy of Agricultural Sciences

National Natural Science Foundation of China

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3