RGD-modified multifunctional nanoparticles encapsulating salvianolic acid A for targeted treatment of choroidal neovascularization

Author:

Zhang JunxiuORCID,Zhu Jingyi,Zhao Lingzhou,Mao Ke,Gu Qing,Li Dongli,Zhao Jinhua,Wu Xingwei

Abstract

Abstract Background The development of alternative anti-angiogenesis therapy for choroidal neovascularization (CNV) remains a great challenge. Nanoparticle systems have emerged as a new form of drug delivery in ocular diseases. Here, we report the construction and characterization of arginine-glycine-aspartic acid (RGD)-conjugated polyethyleneimine (PEI) as a vehicle to load antioxidant salvianolic acid A (SAA) for targeted anti-angiogenesis therapy of CNV. In this study, PEI was consecutively modified with polyethylene glycol (PEG) conjugated RGD segments, 3-(4′-hydroxyphenyl) propionic acid-Osu (HPAO), and fluorescein isothiocyanate (FI), followed by acetylation of the remaining PEI surface amines to generate the multifunctional PEI vehicle PEI.NHAc-FI-HPAO-(PEG-RGD) (for short, RGD-PEI). The formed RGD-PEI was utilized as an effective vehicle platform to load SAA. Results We showed that RGD-PEI/SAA complexes displayed desirable water dispersibility, low cytotoxicity, and sustainable release of SAA under different pH conditions. It could be specifically taken up by retinal pigment epithelium (RPE) cells which highly expressed ɑvβ5 integrin receptors in vitro and selectively accumulated in CNV lesions in vivo. Moreover, the complexes displayed specific therapeutic efficacy in a mouse model of laser induced CNV, and the slow elimination of the complexes in the vitreous cavity was verified by SPECT imaging after 131I radiolabeling. The histological examinations further confirmed the biocompatibility of RGD-PEI/SAA. Conclusions The results suggest that the designed RGD-PEI/SAA complexes may be a potential alternative anti-angiogenesis therapy for posterior ocular neovascular diseases. Graphic abstract

Funder

National Natural Science Founation of China

Natural Science Foundation of Jiangsu Province

Natural Science Foundation for Colleges and Universities in Jiangsu Province

Publisher

Springer Science and Business Media LLC

Subject

Pharmaceutical Science,Applied Microbiology and Biotechnology,Biomedical Engineering,Molecular Medicine,Medicine (miscellaneous),Bioengineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3