Abstract
Abstract
Background
Multi-modal therapy has attracted increasing attention as it provides enhanced effectiveness and potential stimulation of the immune community. However, low accumulation at the tumor sites and quick immune clearance of the anti-tumor agents are still insurmountable challenges. Hypothetically, cancer cell membrane (CCM) can homologously target the tumor whereas multi-modal therapy can complement the disadvantages of singular therapies. Meanwhile, moderate hyperthermia induced by photothermal therapy can boost the cellular uptake of therapeutic agents by cancer cells.
Results
CCM-cloaked indocyanine green (ICG)-incorporated and abraxane (PTX-BSA)-loaded layered double hydroxide (LDH) nanosheets (LIPC NSs) were fabricated for target efficient photo-chemotherapy of colorectal carcinoma (CRC). The CCM-cloaked LDH delivery system showed efficient homologous targeting and cytotoxicity, which was further enhanced under laser irradiation to synergize CRC apoptosis. On the other hand, CCM-cloaking remarkably reduced the uptake of LDH NSs by HEK 293T cells and macrophages, implying mitigation of the side effects and the immune clearance, respectively. In vivo data further exhibited that LIPC NSs enhanced the drug accumulation in tumor tissues and significantly retarded tumor progression under laser irradiation at very low therapeutic doses (1.2 and 0.6 mg/kg of ICG and PTX-BSA), without observed side effects on other organs.
Conclusions
This research has demonstrated that targeting delivery efficiency and immune-escaping ability of LIPC NSs are tremendously enhanced by CCM cloaking for efficient tumor accumulation and in situ generated hyperthermia boosts the uptake of LIPC NSs by cancer cells, a potential effective way to improve the multi-modal cancer therapy.
Graphical Abstract
Funder
Australian Research Council
Publisher
Springer Science and Business Media LLC
Subject
Pharmaceutical Science,Applied Microbiology and Biotechnology,Biomedical Engineering,Molecular Medicine,Medicine (miscellaneous),Bioengineering
Cited by
19 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献