Glucose oxidase and metal catalysts combined tumor synergistic therapy: mechanism, advance and nanodelivery system
-
Published:2023-10-31
Issue:1
Volume:21
Page:
-
ISSN:1477-3155
-
Container-title:Journal of Nanobiotechnology
-
language:en
-
Short-container-title:J Nanobiotechnol
Author:
Fu Yuhan,Sun Jialin,Wang Yanhong,Li Weinan
Abstract
AbstractCancer has always posed a significant threat to human health, prompting extensive research into new treatment strategies due to the limitations of traditional therapies. Starvation therapy (ST) has garnered considerable attention by targeting the primary energy source, glucose, utilized by cancer cells for proliferation. Glucose oxidase (GOx), a catalyst facilitating glucose consumption, has emerged as a critical therapeutic agent for ST. However, mono ST alone struggles to completely suppress tumor growth, necessitating the development of synergistic therapy approaches. Metal catalysts possess enzyme-like functions and can serve as carriers, capable of combining with GOx to achieve diverse tumor treatments. However, ensuring enzyme activity preservation in normal tissue and activation specifically within tumors presents a crucial challenge. Nanodelivery systems offer the potential to enhance therapy effectiveness by improving the stability of therapeutic agents and enabling controlled release. This review primarily focuses on recent advances in the mechanism of GOx combined with metal catalysts for synergistic tumor therapy. Furthermore, it discusses various nanoparticles (NPs) constructs designed for synergistic therapy in different carrier categories. Finally, this review provides a summary of GOx-metal catalyst-based NPs (G-M) and offers insights into the challenges associated with G-M therapy, delivery design, and oxygen (O2) supply.
Funder
Science Foundation Project of Heilongjiang Province of China Heilongjiang Touyan Innovation Team Program National Natural Science Foundation of China
Publisher
Springer Science and Business Media LLC
Subject
Pharmaceutical Science,Applied Microbiology and Biotechnology,Biomedical Engineering,Molecular Medicine,Medicine (miscellaneous),Bioengineering
Reference160 articles.
1. Wang Y, Yan Q, Fan C, Mo Y, Wang Y, Li X, Liao Q, Guo C, Li G, Zeng Z, Xiong W, Huang H. Overview and countermeasures of cancer burden in China. Sci China Life Sci. 2023;13:1–12. 2. Sze MA, Baxter NT, Ruffin MT 4th, Rogers MAM, Schloss PD. Normalization of the microbiota in patients after treatment for colonic lesions. Microbiome. 2017;5(1):150. 3. Hernandez-Delgadillo R, García-Cuéllar CM, Sánchez-Pérez Y, Pineda-Aguilar N, Martínez-Martínez MA, Rangel-Padilla EE, Nakagoshi-Cepeda SE, Solís-Soto JM, Sánchez-Nájera RI, Nakagoshi-Cepeda MAA, Chellam S, Cabral-Romero C. In vitro evaluation of the antitumor effect of bismuth lipophilic nanoparticles (BisBAL NPs) on breast cancer cells. Int J Nanomedicine. 2018;5(13):6089–97. 4. Yan M, Wang W, Zhou J, Chang M, Peng W, Zhang G, Li J, Li H, Bai C. Knockdown of PLAT enhances the anticancer effect of gefitinib in non-small cell lung cancer. J Thorac Dis. 2020;12(3):712–23. 5. Chakraborty PK, Mustafi SB, Xiong X, Dwivedi SKD, Nesin V, Saha S, Zhang M, Dhanasekaran D, Jayaraman M, Mannel R, Moore K, McMeekin S, Yang D, Zuna R, Ding K, Tsiokas L, Bhattacharya R, Mukherjee P. MICU1 drives glycolysis and chemoresistance in ovarian cancer. Nat Commun. 2017;22(8):14634.
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
|
|