Abstract
Abstract
Background
Exenatide is an insulinotropic peptide drug for type 2 diabetes treatment with low risk of hypoglycemia, and is administrated by subcutaneous injection. Oral administration is the most preferred route for lifelong treatment of diabetes, but oral delivery of peptide drug remains a significant challenge due to the absorption obstacles in gastrointestinal tract. We aimed to produce exenatide-loaded nanoparticles containing absorption enhancer, protectant and stabilizer using FDA approved inactive ingredients and easy to scale-up method, and to evaluate their long-term oral therapeutic effect in type 2 diabetes db/db mice.
Results
Two types of nanoparticles, named COM NPs and DIS NPs, were fabricated using anti-solvent precipitation method. In COM NPs, the exenatide was complexed with cholic acid and phosphatidylcholine to increase the exenatide loading efficiency. In both nanoparticles, zein acted as the cement and the other ingredients were embedded in zein nanoparticles by hydrophobic interaction. Casein acted as the stabilizer. The nanoparticles had excellent lyophilization, storage and re-dispersion stability. Hypromellose phthalate protected the loaded exenatide from degradation in simulated gastric fluid. Cholic acid promoted the intestinal absorption of the loaded exenatide via bile acid transporters. The exenatide loading efficiencies of COM NPs and DIS NPs were 79.7% and 53.6%, respectively. The exenatide oral pharmacological availability of COM NPs was 18.6% and DIS NPs was 13.1%. COM NPs controlled the blood glucose level of the db/db mice well and the HbA1c concentration significantly decreased to 6.8% during and after 7 weeks of once daily oral administration consecutively. Both DIS NPs and COM NPs oral groups substantially increased the insulin secretion by more than 60% and promoted the β-cell proliferation by more than 120% after the 7-week administration.
Conclusions
Both COM NPs and DIS NPs are promising systems for oral delivery of exenatide, and COM NPs are better in blood glucose level control than DIS NPs. Using prolamin to produce multifunctional nanoparticles for oral delivery of peptide drug by hydrophobic interaction is a simple and effective strategy.
Funder
National Natural Science Foundation of China
Publisher
Springer Science and Business Media LLC
Subject
Pharmaceutical Science,Applied Microbiology and Biotechnology,Biomedical Engineering,Molecular Medicine,Medicine (miscellaneous),Bioengineering
Reference59 articles.
1. IDF Diabetes Atalas 9th edition. International Diabetes Federation, 2019. https://www.diabetesatlas.org/en/sections/worldwide-toll-of-diabetes.html. Accessed 3 Jan 2020.
2. Laiteerapong N, Ham SA, Gao Y, Moffet HH, Liu JY, Huang ES, et al. The legacy effect in type 2 diabetes: impact of early glycemic control on future complications (the diabetes & aging study). Diabetes Care. 2019;42:416–26.
3. Xiao YF, Hu Y, Du JZ. Controlling blood sugar levels with a glycopolymersome. Mat Horizons. 2019;6:2047–55.
4. Taylor PJ, Thompson CH, Luscombe-Marsh ND, Wycherley TP, Wittert G, Brinkworth GD. Efficacy of real-time continuous glucose monitoring to improve effects of a prescriptive lifestyle intervention in type 2 diabetes: a pilot study. Diabetes Ther. 2019;10:509–22.
5. Kreymann B, Williams G, Ghatei MA, Bloom SR. Glucagon-like peptide-1 7-36: a physiological incretin in man. Lancet. 1987;2:1300–4.
Cited by
29 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献