Author:
Zhao Shu,Xiu Guanghui,Wang Jian,Wen Yi,Lu Jinyuan,Wu Baitong,Wang Guangming,Yang Danjing,Ling Bin,Du Dajiang,Xu Jun
Abstract
AbstractOsteoarthritis (OA) is a degenerative joint disease involving cartilage. Exosomes derived from Mesenchymal stem cells (MSCs) therapy improves articular cartilage repair, but subcutaneous fat (SC) stromal cells derived exosomes (MSCsSC-Exos), especially engineering MSCsSC-Exos for drug delivery have been rarely reported in OA therapy. This objective of this study was to clarify the underlying mechanism of MSCsSC-Exos on cartilage repair and therapy of engineering MSCsSC-Exos for drug delivery in OA. MSCsSC-Exos could ameliorate the pathological severity degree of cartilage via miR-199a-3p, a novel molecular highly enriched in MSCsSC-Exos, which could mediate the mTOR-autophagy pathway in OA rat model. Intra-articular injection of antagomiR-199a-3p dramatically attenuated the protective effect of MSCsSC-Exos-mediated on articular cartilage in vivo. Furthermore, to achieve the superior therapeutic effects of MSCsSC-Exos on injured cartilage, engineering exosomes derived from MSCsSC as the chondrocyte-targeting miR-199a-3p delivery vehicles were investigated in vitro and in vivo. The chondrocyte-binding peptide (CAP) binding MSCsSC-Exos could particularly deliver miR-199a-3p into the chondrocytes in vitro and into deep articular tissues in vivo, then exert the excellent protective effect on injured cartilage in DMM-induced OA mice. As it is feasible to obtain human subcutaneous fat from healthy donors by liposuction operation in clinic, meanwhile engineering MSCsSC-Exos to realize targeted delivery of miR-199a-3p into chondrocytes exerted excellent therapeutic effects in OA animal model in vivo. Through combining MSCsSC-Exos therapy and miRNA therapy via an engineering approach, we develop an efficient MSCsSC-Exos-based strategy for OA therapy and promote the application of targeted-MSCsSC-Exos for drug delivery in the future.
Graphical Abstract
Funder
Natural Science Foundation of Shanghai
National Natural Science Foundation of China
Innovation Program of Shanghai Municipal Education Commission
the National Major Scientific and Technological Special Project for “Significant New Drugs Development”
the Xu Jun’s expert work station
Publisher
Springer Science and Business Media LLC
Subject
Pharmaceutical Science,Applied Microbiology and Biotechnology,Biomedical Engineering,Molecular Medicine,Medicine (miscellaneous),Bioengineering
Cited by
21 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献