Interplay between fatty acid desaturase2 (FADS2) rs174583 genetic variant and dietary antioxidant capacity: cardio-metabolic risk factors in obese individuals

Author:

Khodarahmi Mahdieh,Javidzade Parisa,Farhangi Mahdieh Abbasalizad,Hashemzehi Ahmad,Kahroba Houman

Abstract

Abstract Objective Polymorphisms of the fatty acid desaturase (FADS) gene cluster have been associated with obesity and its-related consequences. This cross-sectional study aimed to investigate whether the adherence to dietary non-enzymatic antioxidant capacity (NEAC), reflecting the antioxidant potential of the whole diet, modifies the association of FADS2 rs174583 polymorphism with cardio-metabolic risk factors in obese adults. Methods The present study included 347 healthy obese adults (aged 20–50 years). Dietary NEAC was assessed by a validated food frequency questionnaire with 147 items and estimated through total radical-trapping antioxidant parameters (TRAP), oxygen radical absorbance capacity (ORAC), and ferric reducing ability of plasma (FRAP) with the use of published databases. FADS2 rs174583 polymorphism was characterized using PCR–RFLP. ANCOVA multivariate interaction model was used to analyze gene-diet interactions. Results after adjustment for the confounding variables (age, physical activity, SES and WC), this study showed significant interactions between rs174583 polymorphism and adherence to dietary ORAC on the serum cholesterol (PInteraction = 0.029), LDL-C (PInteraction = 0.025) and HDL-C levels (PInteraction = 0.049) among the male group; minor allele carriers who had the highest adherence to the NEAC (ORAC) showed a better metabolic profile (lower TG and LDL-C and higher HDL-C) (P < 0.05). Among women, the dietary ORAC-rs174583 interactions were statistically significant for the serum insulin concentration (PInteraction = 0.020), QUICKI (PInteraction = 0.023) and HOMA-IR (PInteraction = 0.017); the highest QUICKI and the lowest HOMA-IR and serum insulin levels were observed in the CC homozygote carriers with the moderate compliance with the dietary ORAC (P < 0.05). In addition, the dietary TRAP modified the association between FADS2 variant and change in LDL-C levels (PInteraction = 0.037); the homozygous wild-type (CC) women who placed in the top tertile of TRAP had significantly the lowest LDL-C levels than those in the second tertile (P < 0.05). Conclusion These data indicate that the FADS2 rs174583 polymorphism interacts with the dietary NEAC to influence cardio-metabolic risk factors in obese subjects. Replication in prospective cohort studies among other populations is required to confirm the results of our study.

Publisher

Springer Science and Business Media LLC

Subject

General Medicine,Endocrinology, Diabetes and Metabolism

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3