Relationship between insulin sensitivity and gene expression in human skeletal muscle

Author:

Parikh Hemang M.ORCID,Elgzyri Targ,Alibegovic Amra,Hiscock Natalie,Ekström Ola,Eriksson Karl-Fredrik,Vaag Allan,Groop Leif C.,Ström Kristoffer,Hansson Ola

Abstract

Abstract Background Insulin resistance (IR) in skeletal muscle is a key feature of the pre-diabetic state, hypertension, dyslipidemia, cardiovascular diseases and also predicts type 2 diabetes. However, the underlying molecular mechanisms are still poorly understood. Methods To explore these mechanisms, we related global skeletal muscle gene expression profiling of 38 non-diabetic men to a surrogate measure of insulin sensitivity, i.e. homeostatic model assessment of insulin resistance (HOMA-IR). Results We identified 70 genes positively and 110 genes inversely correlated with insulin sensitivity in human skeletal muscle, identifying autophagy-related genes as positively correlated with insulin sensitivity. Replication in an independent study of 9 non-diabetic men resulted in 10 overlapping genes that strongly correlated with insulin sensitivity, including SIRT2, involved in lipid metabolism, and FBXW5 that regulates mammalian target-of-rapamycin (mTOR) and autophagy. The expressions of SIRT2 and FBXW5 were also positively correlated with the expression of key genes promoting the phenotype of an insulin sensitive myocyte e.g.PPARGC1A. Conclusions The muscle expression of 180 genes were correlated with insulin sensitivity. These data suggest that activation of genes involved in lipid metabolism, e.g.SIRT2, and genes regulating autophagy and mTOR signaling, e.g.FBXW5, are associated with increased insulin sensitivity in human skeletal muscle, reflecting a highly flexible nutrient sensing.

Funder

Swedish Knowledge Foundation through the Industrial Ph.D. program in Medical Bioinformatics at the Center for Medical Innovations (CMI) at the Karolinska Institute

The Diabetes Programme at Lund University

Diabetesföreningen in Malmö

The Medical Faculty at Lund University

Linnaeus grant from the Swedish Research Council

ERC grant

the Knut and Alice Wallenberg Foundation

Swedish Research Council

Crafoord foundation

ALF

Novo Nordisk foundation

Magnus Bergvall foundation

Påhlsson foundation

Diabetes Wellness

Swedish Diabetes foundation

LUDC-IRC: Swedish Foundation for Strategic Research

EXODIAB: Swedish Research Council, Strategic Research Area

Publisher

Springer Science and Business Media LLC

Subject

General Medicine,Endocrinology, Diabetes and Metabolism

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3