Not there yet: using data-driven methods to predict who becomes costly among low-cost patients with type 2 diabetes

Author:

Lauffenburger Julie C.ORCID,Mahesri Mufaddal,Choudhry Niteesh K.

Abstract

Abstract Background Diabetes is a leading cause of Medicare spending; predicting which individuals are likely to be costly is essential for targeting interventions. Current approaches generally focus on composite measures, short time-horizons, or patients who are already high utilizers, whose costs may be harder to modify. Thus, we used data-driven methods to classify unique clusters in Medicare claims who were initially low utilizers by their diabetes spending patterns in subsequent years and used machine learning to predict these patterns. Methods We identified beneficiaries with type 2 diabetes whose spending was in the bottom 90% of diabetes care spending in a one-year baseline period in Medicare fee-for-service data. We used group-based trajectory modeling to classify unique clusters of patients by diabetes-related spending patterns over a two-year follow-up. Prediction models were estimated with generalized boosted regression, a machine learning method, using sets of all baseline predictors, diabetes predictors, and predictors that are potentially-modifiable through interventions. Each model was evaluated through C-statistics and 5-fold cross-validation. Results Among 33,789 beneficiaries (baseline median diabetes spending: $4153), we identified 5 distinct spending patterns that could largely be predicted; of these, 68.1% of patients had consistent spending, 25.3% had spending that rose quickly, and 6.6% of patients had spending that rose progressively. The ability to predict these groups was moderate (validated C-statistics: 0.63 to 0.87). The most influential factors for those with progressively rising spending were age, generosity of coverage, prior spending, and medication adherence. Conclusions Patients with type 2 diabetes who were initially low spenders exhibit distinct subsequent long-term patterns of diabetes spending; membership in these patterns can be largely predicted with data-driven methods. These findings as well as applications of the overall approach could potentially inform the design and timing of diabetes or cost-containment interventions, such as medication adherence or interventions that enhance access to care, among patients with type 2 diabetes.

Funder

National Institute for Health Care Management Foundation

Publisher

Springer Science and Business Media LLC

Subject

General Medicine,Endocrinology, Diabetes and Metabolism

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3