Exploring risk factors for cervical lymph node metastasis in papillary thyroid microcarcinoma: construction of a novel population-based predictive model

Author:

Huang Yanling,Mao Yaqian,Xu Lizhen,Wen Junping,Chen Gang

Abstract

Abstract Background Machine learning was a highly effective tool in model construction. We aim to establish a machine learning-based predictive model for predicting the cervical lymph node metastasis (LNM) in papillary thyroid microcarcinoma (PTMC). Methods We obtained data on PTMC from the SEER database, including 10 demographic and clinicopathological characteristics. Univariate and multivariate logistic regression (LR) analyses were applied to screen the risk factors for cervical LNM in PTMC. Risk factors with P < 0.05 in multivariate LR analysis were used as modeling variables. Five different machine learning (ML) algorithms including extreme gradient boosting (XGBoost), random forest (RF), adaptive boosting (AdaBoost), gaussian naive bayes (GNB) and multi-layer perceptron (MLP) and traditional regression analysis were used to construct the prediction model. Finally, the area under the receiver operating characteristic (AUROC) curve was used to compare the model performance. Results Through univariate and multivariate LR analysis, we screened out 9 independent risk factors most closely associated with cervical LNM in PTMC, including age, sex, race, marital status, region, histology, tumor size, and extrathyroidal extension (ETE) and multifocality. We used these risk factors to build an ML prediction model, in which the AUROC value of the XGBoost algorithm was higher than the other 4 ML algorithms and was the best ML model. We optimized the XGBoost algorithm through 10-fold cross-validation, and its best performance on the training set (AUROC: 0.809, 95%CI 0.800–0.818) was better than traditional LR analysis (AUROC: 0.780, 95%CI 0.772–0.787). Conclusions ML algorithms have good predictive performance, especially the XGBoost algorithm. With the continuous development of artificial intelligence, ML algorithms have broad prospects in clinical prognosis prediction.

Publisher

Springer Science and Business Media LLC

Subject

General Medicine,Endocrinology, Diabetes and Metabolism

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3