Prediction model for the onset risk of impaired fasting glucose: a 10-year longitudinal retrospective cohort health check-up study

Author:

Wang Yuqi,Wang Liangxu,Su Yanli,Zhong Li,Peng Bin

Abstract

Abstract Background Impaired fasting glucose (IFG) is a prediabetic condition. Considering that the clinical symptoms of IFG are inconspicuous, these tend to be easily ignored by individuals, leading to conversion to diabetes mellitus (DM). In this study, we established a prediction model for the onset risk of IFG in the Chongqing health check-up population to provide a reference for prevention in a health check-up cohort. Methods We conducted a retrospective longitudinal cohort study in Chongqing, China from January 2009 to December 2019. The qualified subjects were more than 20 years old and had more than two health check-ups. After following the inclusion and exclusion criteria, the cohort population was randomly divided into a training set and a test set at a ratio of 7:3. We first selected the predictor variables through the univariate generalized estimation equation (GEE), and then the training set was used to establish the IFG risk model based on multivariate GEE. Finally, the sensitivity, specificity, and receiver operating characteristic curves were used to verify the performance of the model. Results A total of 4,926 subjects were included in this study, with an average of 3.87 check-up records, including 2,634 males and 2,292 females. There were 442 IFG cases during the follow-up period, including 286 men and 156 women. The incidence density was 26.88/1000 person-years for men and 18.53/1000 person-years for women (P<0.001). The predictor variables of our prediction model include male (relative risk (RR) =1.422, 95 % confidence interval (CI): 0.923-2.193, P=0.3849), age (RR=1.030, 95 %CI: 1.016-1.044, P<0.0001), waist circumference (RR=1.005, 95 %CI: 0.999-1.012, P=0.0975), systolic blood pressure (RR=1.004, 95 %CI: 0.993-1.016, P=0.4712), diastolic blood pressure (RR=1.023, 95 %CI: 1.005-1.041, P=0.0106), obesity (RR=1.797, 95 %CI: 1.126-2.867, P=0.0140), triglycerides (RR=1.107, 95 %CI: 0.943-1.299, P=0.2127), high-density lipoprotein cholesterol (RR=0.992, 95 %CI: 0.476-2.063, P=0.9818), low-density lipoprotein cholesterol (RR=1.793, 95 %CI: 1.085-2.963, P=0.0228), blood urea (RR=1.142, 95 %CI: 1.022-1.276, P=0.0192), serum uric acid (RR=1.004, 95 %CI: 1.002-1.005, P=0.0003), total cholesterol (RR=0.674, 95 %CI: 0.403-1.128, P=0.1331), and serum creatinine levels (RR=0.960, 95 %CI: 0.945-0.976, P<0.0001). The area under the receiver operating characteristic curve (AUC) in the training set was 0.740 (95 %CI: 0.712-0.768), and the AUC in the test set was 0.751 (95 %CI: 0.714-0.817). Conclusions The prediction model for the onset risk of IFG had good predictive ability in the health check-up cohort.

Funder

2020 Chongqing Medical University Postgraduate Smart Medicine Special Research and Development Program Funding Project

The National Key R&D Program of China

Publisher

Springer Science and Business Media LLC

Subject

General Medicine,Endocrinology, Diabetes and Metabolism

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3