Metformin activates Wnt/β-catenin for the treatment of diabetic osteoporosis

Author:

Huang Xiaopeng,Li Siyun,Lu Wenjie,Xiong Longjiang

Abstract

Abstract Background With the deepening of social aging, the incidence rate of osteoporosis and diabetes continues to rise. More and more clinical studies show that diabetes is highly correlated with osteoporosis. Diabetes osteoporosis is considered as a metabolic bone disease of diabetes patients. This study aims to explore the role and mechanism of metformin (Met) in diabetic osteoporosis. Methods Mouse MC3T3-E1 cells were treated with Met (0.5 mM) and exposed to high glucose (HG, 35 mM). The cells were cultured in an osteogenic medium for osteogenic differentiation, and the cell proliferation ability was determined using Cell Counting Kit-8; Alkaline phosphatase (ALP) activity detection and alizarin red staining were utilized to evaluate the effect of Met on MC3T3-E1 osteogenic differentiation. Western blot was used to detect the expressions of osteogenesis-related proteins (Runx2 and OCN) as well as Wnt/β-catenin signaling pathway-related proteins in MC3T3-E1 cells. Results HG inhibited proliferation and calcification of MC3T3-E1 cells, down-regulated ALP activity, and the expression of Runx2 and OCN in MC3T3-E1 cells. Meanwhile, the activity of the Wnt/β-catenin signaling pathway was inhibited. Met treatment was found to significantly stimulate the proliferation and calcification of MC3T3-E1 cells under HG conditions, as well as increase the ALP activity and the protein expression level of Runx2 and OCN in the cells. As a result, osteogenic differentiation was promoted and osteoporosis was alleviated. Apart from this, Met also increased the protein expression level of Wnt1, β-catenin, and C-myc to activate the Wnt/β-catenin signaling pathway. Conclusion Met can stimulate the proliferation and osteogenic differentiation of MC3T3-E1 cells under HG conditions. Met may also treat diabetic osteoporosis through Wnt/β-catenin activation.

Funder

Science and Technology Plan of Health Commission of Jiangxi Province

Publisher

Springer Science and Business Media LLC

Subject

General Medicine,Endocrinology, Diabetes and Metabolism

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3