Author:
Qi Xuejie,Geng Xiao,Zhang Juan,Qu Binpeng,Zhang Xin,Jia Qiang,Yin Wenhui,Bo Cunxiang,Liu Yan,Li Hao,Sai Linlin,Han Mingming,Peng Cheng
Abstract
Abstract
Background
Increasing evidence suggested N6-methyladenosine (m6A) modification is crucial for male germline development. However, m6A modification of lncRNAs gains a little attention in amphibians in recent years. Xenopus laevis (X. laevis) was chosen to be an ideal model organism for testing environmental endocrine disrupting chemicals (EDCs) exposure and resultant effects. Atrazine (AZ) as an endocrine disrupt can effect development of testis in amphibians. Our previous study revealed that m6A is a highly conserved modification across the species.
Results
The results of m6A sequences showed that m6A-methylated lncRNAs enriched in intergenic region in testes of X. laevis. We further examined the differential expression of lncRNAs m6A sites in testes of AZ-exposed and compared with that in animals from control group. The results indicated that up to 198 differentially methylated m6A sites were detected within 188 lncRNAs, in which 89 significantly up-methylated sites and 109 significantly down-methylated sites. Data from KEGG pathway analysis indicated that AZ-affected lncRNAs m6A sites were mainly involved in 10 pathways in which 3 mutual pathways were found in the result of differentially m6A-methylated mRNAs.
Conclusions
These findings suggested that differentially m6A-methylated lncRNAs and these 3 pathways may act on regulatory roles in abnormal testis development of AZ-exposed X. laevis. This study for the first time provides insights into the profile of lncRNAs m6A modifications in amphibian species.
Funder
health commission of shandong province
ji’nan science and technology bureau
national natural science foundation of china
the innovation project of shandong academy of medical sciences, academic promotion programme of shandong first medical university
ministry of science and technology of prc
Publisher
Springer Science and Business Media LLC
Subject
Environmental Science (miscellaneous),Genetics,Social Psychology
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献