Abstract
Abstract
Background
DNA adducts, covalent modifications to DNA due to exposure to specific carcinogens, cause the mispairing of DNA bases, which ultimately results in DNA mutations. DNA methylation in the promoter region, another type of DNA base modification, alters the DNA transcription process, and has been implicated in carcinogenesis in humans due to the down-regulation of tumor suppressor genes. Difficulties are associated with demonstrating the existence of DNA adducts or chemically modified bases in the human urological system. Apart from aristolochic acid-DNA adducts, which cause urothelial carcinoma and endemic nephropathy in a particular geographical area (Balkan), limited information is currently available on DNA adduct profiles in renal cell carcinoma and upper urinary tract urothelial carcinoma, including renal pelvic cancer and ureteral cancer.
Method
To elucidate the significance of DNA adducts in carcinogenesis in the urothelial system, we investigated 53 DNA adducts in the non-tumoral renal parenchyma and non-tumoral renal pelvis of patients with renal cell carcinoma, upper urinary tract urothelial carcinoma, and other diseases using liquid chromatography coupled with tandem mass spectrometry. A comparative analysis of tissue types, the status of malignancy, and clinical characteristics, including lifestyle factors, was performed.
Results
C5-Methyl-2′-deoxycytidine, C5-hydroxymethyl-2′-deoxycytidine (5hmdC), C5-formyl-2′-deoxycytidine, 2′-deoxyinosine, C8-oxo-2′-deoxyadenosine, and C8-oxo-2′-deoxyguanosine (8-OHdG) were detected in the renal parenchyma and renal pelvis. 8-OHdG was more frequently detected in the renal pelvis than in the renal cortex and medulla (p = 0.048 and p = 0.038, respectively). 5hmdC levels were significantly lower in the renal pelvis of urothelial carcinoma patients (n = 10) than in the urothelium of patients without urothelial carcinoma (n = 15) (p = 0.010). Regarding 5hmdC levels in the renal cortex and medulla, Spearman’s rank correlation test revealed a negative correlation between age and 5hmdC levels (r = − 0.46, p = 0.018 and r = − 0.45, p = 0.042, respectively).
Conclusions
The present results revealed a reduction of 5hmdC levels in the non-tumoral urinary tract mucosa of patients with upper urinary tract urothelial carcinoma. Therefore, the urothelial cell epithelia of patients with upper urinary tract cancer, even in non-cancerous areas, may be predisposed to urothelial cancer.
Funder
Japan Society for the Promotion of Science
Japan Agency for Medical Research and Development
the Smoking Research Foundation
Hamamatsu University School of Medicine
Publisher
Springer Science and Business Media LLC
Subject
Environmental Science (miscellaneous),Genetics,Social Psychology
Reference61 articles.
1. Weinberg RA. The biology of cancer. 2nd ed: Garland science; 2013.
2. Yu J, Ni M, Xu J, Zhang H, Gao B, Gu J, et al. Methylation profiling of twenty promoter-CpG islands of genes which may contribute to hepatocellular carcinogenesis. BMC Cancer. 2002;2:29.
3. Bearzatto A, Conte D, Frattini M, Zaffaroni N, Andriani F, Balestra D, et al. p16(INK4A) Hypermethylation detected by fluorescent methylation-specific PCR in plasmas from non-small cell lung cancer. Clin Cancer Res. 2002;8(12):3782–7.
4. Lee MG, Huh JS, Chung SK, Lee JH, Byun DS, Ryu BK, et al. Promoter CpG hypermethylation and downregulation of XAF1 expression in human urogenital malignancies: implication for attenuated p53 response to apoptotic stresses. Oncogene. 2006;25(42):5807–22.
5. Martinez R, Setien F, Voelter C, Casado S, Quesada MP, Schackert G, et al. CpG island promoter hypermethylation of the pro-apoptotic gene caspase-8 is a common hallmark of relapsed glioblastoma multiforme. Carcinogenesis. 2007;28(6):1264–8.
Cited by
5 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献