Weight of evidence approach using a TK gene mutation assay with human TK6 cells for follow-up of positive results in Ames tests: a collaborative study by MMS/JEMS

Author:

Yasui ManabuORCID,Fukuda Takayuki,Ukai Akiko,Maniwa Jiro,Imamura Tadashi,Hashizume Tsuneo,Yamamoto Haruna,Shibuya Kaori,Narumi Kazunori,Fujiishi Yohei,Okada Emiko,Fujishima Saori,Yamamoto Mika,Otani Naoko,Nakamura Maki,Nishimura Ryoichi,Ueda Maya,Mishima Masayuki,Matsuzaki Kaori,Takeiri Akira,Tanaka Kenji,Okada Yuki,Nakagawa Munehiro,Hamada Shuichi,Kajikawa Akihiko,Honda Hiroshi,Adachi Jun,Misaki Kentaro,Ogawa Kumiko,Honma Masamitsu

Abstract

Abstract Background Conflicting results between bacterial mutagenicity tests (the Ames test) and mammalian carcinogenicity tests might be due to species differences in metabolism, genome structure, and DNA repair systems. Mutagenicity assays using human cells are thought to be an advantage as follow-up studies for positive results in Ames tests. In this collaborative study, a thymidine kinase gene mutation study (TK6 assay) using human lymphoblastoid TK6 cells, established in OECD TG490, was used to examine 10 chemicals that have conflicting results in mutagenicity studies (a positive Ames test and a negative result in rodent carcinogenicity studies). Results Two of 10 test substances were negative in the overall judgment (20% effective as a follow-up test). Three of these eight positive substances were negative after the short-term treatment and positive after the 24 h treatment, despite identical treatment conditions without S9. A toxicoproteomic analysis of TK6 cells treated with 4-nitroanthranilic acid was thus used to aid the interpretation of the test results. This analysis using differentially expressed proteins after the 24 h treatment indicated that in vitro specific oxidative stress is involved in false positive response in the TK6 assay. Conclusions The usefulness of the TK6 assay, by current methods that have not been combined with new technologies such as proteomics, was found to be limited as a follow-up test, although it still may help to reduce some false positive results (20%) in Ames tests. Thus, the combination analysis with toxicoproteomics may be useful for interpreting false positive results raised by 24 h specific reactions in the assay, resulting in the more reduction (> 20%) of false positives in Ames test.

Funder

Ministry of Health, Labour and Welfare

Publisher

Springer Science and Business Media LLC

Subject

Environmental Science (miscellaneous),Genetics,Social Psychology

Reference86 articles.

1. ICH. ICH guideline M7 - genotoxic impurities - assessment and control of DNA reactive (mutagenic) impurities to limit potential carcinogenic risk. Guideline. 2014;44:30 Available from: http://www.ich.org/products/guidelines/multidisciplinary/article/multidisciplinary-guidelines.html.

2. Hardy A, Benford D, Halldorsson T, Jeger M, Knutsen HK, More S, et al. Clarification of some aspects related to genotoxicity assessment. EFSA J. 2017;15(12):e05113.

3. ECHA. Chapter R.7a: endpoint specific guidance. In: Guid. Inf. Requir. Chem. Saf. Assessment. Version 6.0; 2017.

4. Kirkland D, Aardema M, Henderson L, Müller L. Evaluation of the ability of a battery of three in vitro genotoxicity tests to discriminate rodent carcinogens and non-carcinogens: I. sensitivity, specificity and relative predictivity. Mutat Res Genet Toxicol Environ Mutagen. 2005;584:1–256.

5. Matthews EJ, Kruhlak NL, Cimino MC, Benz RD, Contrera JF. An analysis of genetic toxicity, reproductive and developmental toxicity, and carcinogenicity data: I. identification of carcinogens using surrogate endpoints. Regul Toxicol Pharmacol. 2006;44:83–96.

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3