Abstract
Abstract
Background
Previously, we have reported on the two curcuminoid analogues with piperidone derivatives, namely FLDP-5 and FLDP-8 have more potent anti-proliferative and anti-migration effects than curcumin. In this study, we further investigated the mode of cell death and the mechanism involved in the cell death process induced by these analogues on human glioblastoma LN-18 cells.
Results
The FLDP-5 and FLDP-8 curcuminoid analogues induced LN-18 cell death through apoptosis in a concentration-dependent manner following 24 h of treatment. These analogues induced apoptosis in LN-18 cells through significant loss of mitochondrial mass and mitochondrial membrane potential (MMP) as early as 1-hour of treatment. Interestingly, N-acetyl-l-cysteine (NAC) pretreatment did not abolish the apoptosis induced by these analogues, further confirming the cell death process is independent of ROS. However, the apoptosis induced by the analogues is caspases-dependent, whereby pan-caspase pretreatment inhibited the curcuminoid analogues-induced apoptosis. The apoptotic cell death progressed with the activation of both caspase-8 and caspase-9, which eventually led to the activation of caspase-3, as confirmed by immunoblotting. Moreover, the existing over-expression of miRNA-21 in LN-18 cells was suppressed following treatment with both analogues, which suggested the down-regulation of the miRNA-21 facilitates the cell death process.
Conclusion
The FLDP-5 and FLDP-8 curcuminoid analogues downregulate the miRNA-21 expression and induce extrinsic and intrinsic apoptotic pathways in LN-18 cells.
Funder
Ministry of Higher Education of Malaysia
Publisher
Springer Science and Business Media LLC
Reference57 articles.
1. Perry M-CC, Demeule M, Régina A, Moumdjian R, Béliveau R. Curcumin inhibits tumor growth and angiogenesis in glioblastoma xenografts. Mol Nutr Food Res. 2010;54:1192–201.
2. Chen QY, Jiao DM, Wang LF, Wang L, Hu HZ, Song J, et al. Curcumin inhibits proliferation-migration of NSCLC by steering crosstalk between a wnt signaling pathway and an adherens junction via EGR-1. Mol Biosyst. 2015;11:859–68.
3. Seo J, Kim B, Dhanasekaran DN, Tsang BK, Song YS. Curcumin induces apoptosis by inhibiting sarco/endoplasmic reticulum Ca2 + ATPase activity in ovarian cancer cells. Cancer Lett. 2016;371:30–7.
4. Vyas A, Dandawate P, Padhye S, Ahmad A, Sarkar F. Perspectives on new synthetic curcumin analogs and their potential anticancer properties. Curr Pharm Des. 2013;19:2047–69.
5. Batie S, Lee JH, Jama RA, Browder DO, Montano LA, Huynh CC, et al. Synthesis and biological evaluation of halogenated curcumin analogs as potential nuclear receptor selective agonists. Bioorg Med Chem. 2013;21:693–702.
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献