Clinical M2 macrophages-related genes to aid therapy in pancreatic ductal adenocarcinoma

Author:

Xu Qianhui,Chen Shaohuai,Hu Yuanbo,Huang WenORCID

Abstract

Abstract Background Increasing evidence supports that infiltration M2 Macrophages act as pivotal player in tumor progression of pancreatic ductal adenocarcinoma (PDAC). Nonetheless, comprehensive analysis of M2 Macrophage infiltration and biological roles of hub genes (FAM53B) in clinical outcome and immunotherapy was lack. Method The multiomic data of PDAC samples were downloaded from distinct datasets. CIBERSORT algorithm was performed to uncover the landscape of TIME. Weighted gene co-expression network analysis (WGCNA) was performed to identify candidate module and significant genes associated with M2 Macrophages. Kaplan-Meier curve and receiver operating characteristic (ROC) curves were applied for prognosis value validation. Mutation data was analyzed by using “maftools” R package. Gene set variation analysis (GSVA) was employed to assign pathway activity estimates to individual sample. Immunophenoscore (IPS) was implemented to estimate immunotherapeutic significance of risk score. The half-maximal inhibitory concentration (IC50) of chemotherapeutic drugs was predicted by using the pRRophetic algorithm. Finally, quantitative real-time polymerase chain reaction was used to determine FAM53B mRNA expression and TIMER database was utilized to uncover its possible role in immune infiltration of PDAC. Results Herein, 17,932 genes in 234 samples (214 tumor and 20 normal) were extracted from three platforms. Taking advantage of WGCNA, significant module (royalblue) and 135 candidate genes were considered as M2 Macrophages-related genes. Subsequently, risk signature including 5 hub genes was developed by multiple analysis, which exhibited excellent prognostic performance. Besides, comprehensive prognostic nomogram was constructed to quantitatively estimate risk. Then, intrinsic link between risk score with tumor mutation burden (TMB) was explored. Additionally, risk score significantly correlated with diversity of tumor immune microenvironment (TIME). PDAC samples within different risk presented diverse signaling pathways activity and experienced significantly distinct sensitivity to administering chemotherapeutic or immunotherapeutic agents. Finally, the biological roles of FAM53B were revealed in PDAC. Conclusions Taken together, comprehensive analyses of M2 Macrophages profiling will facilitate prognostic prediction, delineating complexity of TIME, and contribute insight into precision therapy for PDAC.

Funder

Wenzhou Municipal Science and Technology Bureau

Publisher

Springer Science and Business Media LLC

Subject

Cancer Research,Genetics,Oncology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3