METTL14 enhances the m6A modification level of lncRNA MSTRG.292666.16 to promote the progression of non-small cell lung cancer

Author:

Ji Xianxiu,Wan Xiaoying,Sun Hui,Deng Qinfang,Meng Shuyan,Xie Boxiong,Zhou Songwen

Abstract

Abstract Background m6A modification has close connection with the occurrence, development, and prognosis of tumors. This study aimed to explore the roles of m6A modification and its related mechanisms in non-small cell lung cancer (NSCLC). Methods NSCLC tissues and their corresponding para-cancerous tissues were collected to determine the m6A levels of total RNA/lncRNAs and the expression of m6A modification-related genes/lncRNAs. Then, A549 cells were transfected with si-METTL14 or oe-METTL14, and the cell transfection efficiency was assessed. Subsequently, the viability, apoptosis, cell colony formation, migration and invasion of the different cells were determined. Finally, the nude mouse tumorigenicity experiments were performed to observe the effects of METTL14 in vivo. Results Compared to the para-NSCLC tissues, the m6A level and METTL14 expression were both significantly increased in the NSCLC tissues (P < 0.05). Based on the expression of METTL14 in the different cell lines, A549 cells were chosen for further experiments. Then, the A549 cells with METTL14 knockdown and overexpression were successfully established, as well as it was found that METTL14 knockdown could inhibit the viability, colony formation, migration, and invasion of A549 cells, while facilitate their apoptosis. In vivo experiments also showed that METTL14 knockdown could inhibit tumor formation and growth. Additionally, the m6A level of MSTRG.292666.16 was higher in the NSCLC tissues; and after METTL14 knockdown, the expression and m6A level of MSTRG.292666.16 were both significantly reduced in A549 cells, and vice versa. Conclusion METTL14 may promote the progression of NSCLC through up-regulating MSTRG.292666.16 and enhance its m6A modification level.

Funder

Subproject of key project of Zhangjiang Hi-Tech Park in Shanghai

Publisher

Springer Science and Business Media LLC

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3