A multi-parametric prognostic model based on clinical features and serological markers predicts overall survival in non-small cell lung cancer patients with chronic hepatitis B viral infection

Author:

Chen Shulin,Huang Hanqing,Liu Yijun,Lai Changchun,Peng Songguo,Zhou Lei,Chen Hao,Xu Yiwei,He XiaORCID

Abstract

Abstract Background To establish and validate a multi-parametric prognostic model based on clinical features and serological markers to estimate the overall survival (OS) in non-small cell lung cancer (NSCLC) patients with chronic hepatitis B viral (HBV) infection. Methods The prognostic model was established by using Lasso regression analysis in the training cohort. The incremental predictive value of the model compared to traditional TNM staging and clinical treatment for individualized survival was evaluated by the concordance index (C-index), time-dependent ROC (tdROC) curve, and decision curve analysis (DCA). A prognostic model risk score based nomogram for OS was built by combining TNM staging and clinical treatment. Patients were divided into high-risk and low-risk subgroups according to the model risk score. The difference in survival between subgroups was analyzed using Kaplan–Meier survival analysis, and correlations between the prognostic model, TNM staging, and clinical treatment were analysed. Results The C-index of the model for OS is 0.769 in the training cohorts and 0.676 in the validation cohorts, respectively, which is higher than that of TNM staging and clinical treatment. The tdROC curve and DCA show the model have good predictive accuracy and discriminatory power compare to the TNM staging and clinical treatment. The prognostic model risk score based nomogram show some net clinical benefit. According to the model risk score, patients are divided into low-risk and high-risk subgroups. The difference in OS rates is significant in the subgroups. Furthermore, the model show a positive correlation with TNM staging and clinical treatment. Conclusions The prognostic model showed good performance compared to traditional TNM staging and clinical treatment for estimating the OS in NSCLC (HBV+) patients.

Funder

National Natural Science Foundation of China

Natural Science Foundation of Guangdong Province

Publisher

Springer Science and Business Media LLC

Subject

Cancer Research,Genetics,Oncology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3