Circular RNA circEYA3 promotes the radiation resistance of hepatocellular carcinoma via the IGF2BP2/DTX3L axis

Author:

Hu Pan,Lin Letao,Huang Tao,Li Zhenyu,Xiao Meigui,Guo Huanqing,Chen Guanyu,Liu Dengyao,Ke Miaola,Shan Hongbo,Zhang Fujun,Zhang Yanling

Abstract

Abstract Background Hepatocellular carcinoma (HCC) has a high incidence and mortality rate despite various treatment options, including 125I seed implantation. However, recurrence and radiation resistance remain challenging issues. Hsa_circ_0007895 (circEYA3)—derived from exons 2–6 of EYA3–facilitates the proliferation and progression of pancreatic ductal adenocarcinoma. However, the role of circEYA3 in HCC 125I radiation resistance remains unclear. Thus, we aimed to investigate the functions and underlying molecular mechanisms of circEYA3 in HCC under 125I and X-ray irradiation conditions. Methods CircEYA3 was identified by RNA-seq in patients with HCC before and after 125I seed implantation treatment, followed by fluorescence in situ hybridization and RNase R assays. The radiosensitivity of HCC cell lines irradiated with 125I seeds or external irradiation were evaluated using the Cell Counting Kit 8, flow cytometry, γH2A.X immunofluorescence and comet assays. RNA pull-down and RNA immunoprecipitation assays were performed to explore the interactions between circEYA3 and IGF2BP2. DTX3L mRNA was identified by RNA-seq in PLC/PRF/5 cells with overexpressed circEYA3. The corresponding in vitro results were verified using a mouse xenograft model. Results CircEYA3 decreased the radiosensitivity of HCC cells both in vitro and in vivo. Notably, using a circRNA pulldown assay and RNA-binding protein immunoprecipitation, we identified IGF2BP2 as a novel and robust interacting protein of circEYA3. Mechanistically, circEYA3 binds to IGF2BP2 and enhances its ability to stabilize DTX3L mRNA, thereby specifically alleviating radiation-induced DNA damage in HCC cells. Conclusions Our findings demonstrate that circEYA3 increases the radioresistance of HCC to 125I seeds and external irradiation via the IGF2BP2/DTX3L axis. Thus, circEYA3 might be a predictive indicator and intervention option for 125I brachytherapy or external radiotherapy in HCC.

Funder

National Natural Science Foundation of China

Cancer Innovative Research Program of Sun Yat-sen University Cancer Center

Publisher

Springer Science and Business Media LLC

Subject

Cancer Research,Genetics,Oncology

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3