Abstract
Abstract
Background
Piezo1 has been revealed to play a regulatory role in vascular development and progression of variety tumors. However, whether and how the progression of hepatocellular carcinoma (HCC) regulated by Piezo1 remains elusive. This study aimed to elucidate the effect and mechanisms of Piezo1 in HCC.
Methods
The mRNA and protein expression level of Piezo1 in HCC samples and cell lines was determined by qRT-PCR, western blot and immunohistochemistry analyses. Two independent study cohorts containing 280 patients were analyzed to reveal the association between Piezo1 expression and clinicopathological characteristics. Series of in vitro and in vivo experiments were used to validate the function of Piezo1 in HCC. Gene set enrichment analysis (GSEA) was performed to explore the signaling pathway of Piezo1. Immunoprecipitation, immunofluorescence and in vitro and in vivo experiments were used to explore the molecular mechanism of Piezo1 in HCC progression.
Results
Our results demonstrated the Piezo1 expression was significantly upregulated in HCC tissues and cell lines, and upregulation of Piezo1 closely correlated with aggressive clinicopathological features and poor prognosis. Knockdown of Piezo1 in HCCLM3 and Hep3B cells significantly restrained proliferation, migration, invasion and epithelial–mesenchymal transition (EMT) of HCC cells in vitro, and tumor growth, metastasis, EMT in vivo. TGF-β signaling pathway was most significant enriched pathway in GSEA. Finally, tumor promotion effect of Piezo1 was found to exerted through recruiting and combining Rab5c to activating TGF-β signaling pathway.
Conclusions
Piezo1 significantly related to poor prognosis and promotes progression of hepatocellular carcinoma via activating TGF-β signaling, which suggesting that Piezo1 may serve as a novel prognostic predictor and the potential therapeutic target for HCC patients.
Funder
National Natural Science Foundation of China
Specialized Research Fund for the Doctoral Program of Higher Education of China
Publisher
Springer Science and Business Media LLC
Subject
Cancer Research,Genetics,Oncology
Cited by
18 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献