3-Methyladenine but not antioxidants to overcome BACH2-mediated bortezomib resistance in mantle cell lymphoma

Author:

Feng Min,Wang Jia,Sun Ming,Li Guilan,Li BingXiang,Zhang HanORCID

Abstract

Abstract Background Bortezomib (BTZ) is an inhibitor of the proteasome that has been used to treat patients with mantle cell lymphoma (MCL), but the resistance to BTZ in clinical cases remains a major drawback. BACH2 is a lymphoid-specific transcription repressor recognized as a tumor suppressor in MCL. Reduced BACH2 levels contribute to BTZ resistance; however, the molecular events underlying BACH2-mediated BTZ resistance are largely unclear. Methods We silenced BACH2 in MCL cells using a lentiviral shRNA-mediated knockdown system. Bioinformatic, real-time RT-PCR, immunoblotting and a series of functional assays were performed to describe the molecular mechanisms underlying BTZ resistance in MCL. The therapeutic effects of chemicals were evaluated on numerous cellular and molecular processes in resistant MCL cell lines and xenografts. Results In resistant cells, BTZ-triggered mild oxidative stress induced a strong activation of PI3K-AKT signaling, which further blocked nuclear translocation of BACH2. Defective nuclear translocation of BACH2 or silencing BACH2 removed its transcriptional repression on HMOX1, leading to upregulation of heme oxygenase-1 (HO-1). Increased HO-1 further maintained reactive oxygen species (ROS) within a minimal tumor-promoting level and enhanced cytoprotective autophagy. Interestingly, although mild increase in ROS exhibited a pro-tumorigenic effect on resistant cells, simply blocking ROS by antioxidants did not lead to cell death but aggravated BTZ resistance via stabilizing BACH1, the other member of BACH family. Instead, 3-methyladenine (3-MA), a dual inhibitor to suppress PI3K signaling and autophagosome formation, sensitized resistant MCL cells to BTZ, both in vitro and in vivo. Conclusion Our results dissected the interconnected molecular network in resistant MCL cells in which 3-MA represents an effective therapeutic strategy to overcome BTZ resistance. Notably, BACH1 and BACH2, albeit from the same family, are likely to play opposite roles in pathogenesis and progression of MCL.

Funder

Program of Medical Discipline Leader in Yunnan Health System

National Natural Science Foundation of China

Natural Science Foundation of Yunnan Province

Publisher

Springer Science and Business Media LLC

Subject

Cancer Research,Genetics,Oncology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3