SNRPD1 confers diagnostic and therapeutic values on breast cancers through cell cycle regulation

Author:

Dai XiaofengORCID,Yu Lihui,Chen Xiao,Zhang Jianying

Abstract

Abstract Background SNRPD1 is a spliceosome-associated protein and has previously been implicated with important roles in cancer development. Methods Through analyzing the differential expression patterns and clinical association of splicing associated genes among tumor and tumor adjacent samples across different tumors and among different breast cancer subtypes, we identify the tumor promotive role of SNRPD1 using multiple publicly available datasets. Through pathway, gene ontology enrichment analysis and network construction, we linked the onco-therapeutic role of SNRPD1 with cell cycle. Via a series of experimental studies including knockdown assay, qPCR, western blotting, cell cycle, drug response assay, we confirmed the higher expression of SNPRD1 at both gene and protein expression levels in triple negative breast cancer cells, as well as its roles in promoting cell cycle and chemotherapy response. Results Our study revealed that SNRPD1 over-expression was significantly associated with genes involved in cell cycle, cell mitosis and chromatin replication, and silencing SNRPD1 in breast cancer cells could lead to halted tumor cell growth and cell cycle arrest at the G0/G1 stage. We also found that triple negative breast cancer cells with reduced SNRPD1 expression lost certain sensitivity to doxorubicin whereas luminal cancer cells did not. Conclusions Our results suggested the prognostic value of SNRPD1 on breast cancer survival, its potential as the therapeutic target halting cell cycle progression for breast cancer control, and warranted special attention on the combined use of doxorubicin and drugs targeting SNRPD1.

Funder

National Natural Science Foundation of China

Fundamental Research Funds for the Central Universities

Technology Development Funding of Wuxi

Publisher

Springer Science and Business Media LLC

Subject

Cancer Research,Genetics,Oncology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3