Abstract
Abstract
Background
A hydatidiform mole is a condition caused by abnormal proliferation of trophoblastic cells. MicroRNA miR-30a acts as a tumor suppressor gene in most tumors and participates in the development of various cancers. However, its role in hydatidiform moles is not clear.
Methods
Quantitative real-time reverse transcription PCR was used to verify the expression level of miR-30a and STOX2 (encoding storkhead box 2). Flow cytometry assays were performed to detect the cell cycle in cell with different expression levels of miR-30a and STOX2. Cell Cycle Kit-8, 5-ethynyl-2′-deoxyuridine, and colony formation assays were used to detect cell proliferation and viability. Transwell assays was used to test cell invasion and migration. Dual-luciferase reporter assays and western blotting were used to investigate the potential mechanisms involved.
Result
Low miR-30a expression promoted the proliferation, migration, and invasion of trophoblastic cells (JAR and HTR-8). Dual luciferase assays confirmed that STOX2 is a target of miR-30a and resisted the effect of upregulated miR-30a in trophoblastic cells. In addition, downregulation of STOX2 by miR-30a could activate ERK, AKT, and P38 signaling pathways. These results revealed a new mechanism by which ERK, AKT, and P38 activation by miR-30a/STOX2 results in excessive proliferation of trophoblast cells in the hydatidiform mole.
Conclusions
In this study, we found that miR-30a plays an important role in the development of the hydatidiform mole. Our findings indicate that miR-30a might promote the malignant transformation of human trophoblastic cells by regulating STOX2, which strengthens our understanding of the role of miR-30a in regulating trophoblastic cell transformation.
Funder
the National Natural Scientific Grants
the Liaoning Key R&D Program
the Scientific Research Foundation of Liaoning province
the program for Liaoning Provincial Program for Top Discipline of Basic Medical Sciences
the National Natural Scientific Grants
the national and local joint engineering research center for mongolian medicine research and development
Publisher
Springer Science and Business Media LLC
Subject
Cancer Research,Genetics,Oncology
Reference50 articles.
1. Jagtap SV, Aher V, Gadhiya S, Jagtap SS. Gestational trophoblastic disease—clinicopathological study at tertiary care hospital. J Clin Diagn Res. 2017;11(8):Ec27–30.
2. Eysbouts YK, Ottevanger PB, Massuger L, IntHout J, Short D, Harvey R, et al. Can the FIGO 2000 scoring system for gestational trophoblastic neoplasia be simplified? A new retrospective analysis from a nationwide dataset. Ann Oncol. 2017;28(8):1856–61.
3. Shaaban AM, Rezvani M, Haroun RR, Kennedy AM, Elsayes KM, Olpin JD, et al. Gestational trophoblastic disease: clinical and imaging features. Radiographics. 2017;37(2):681–700.
4. Shih IM. Gestational trophoblastic neoplasia—pathogenesis and potential therapeutic targets. Lancet Oncol. 2007;8(7):642–50.
5. Vargas R, Barroilhet LM, Esselen K, Diver E, Bernstein M, Goldstein DP, et al. Subsequent pregnancy outcomes after complete and partial molar pregnancy, recurrent molar pregnancy, and gestational trophoblastic neoplasia: an update from the New England Trophoblastic Disease Center. J Reprod Med. 2014;59(5–6):188–94.
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献