Author:
Ma Xiaoqing,Deng Zilin,Li Zhen,Ma Ting,Li Guiqing,Zhang Cuijia,Zhang Wentao,Chang Jin
Abstract
Abstract
Background
Disulfidptosis and Ferroptosis are two novel forms of cell death. Although their mechanisms differ, research has shown that there is a relationship between the two. Investigating the connection between these two forms of cell death can further deepen our understanding of the development and progression of cancer, and provide better prediction models for accurate prognosis.
Methods
In this study, RNA sequencing (RNA-seq) data, clinical data, single nucleotide polymorphism (SNP) data, and single-cell sequencing data were obtained from public databases. We used weighted gene co-expression network analysis (WGCNA) and unsupervised clustering to identify new Disulfidptosis/Ferroptosis-Related Genes (DFRG), and constructed a LASSO COX prognosis model that was externally validated. To further explore this novel signature, pathway and function analysis was performed, and differences in gene mutation frequency between high- and low-risk groups were studied. Importantly, we also conducted research on immune checkpoint, immune cell infiltration levels and immune resistance indicators, in addition to analyzing real clinical immunotherapy data.
Results
We have identified four optimal disulfidptosis/ferroptosis-related genes (ODFRGs) that are differentially expressed and associated with the prognosis of Lung Adenocarcinoma (LUAD). These genes include GMPR, MCFD2, MRPL13, and SALL2. Based on these ODFRGs, we constructed a robust prognostic model in this study, and the high-risk group showed significantly lower overall survival (OS) compared to the low-risk group. Furthermore, this model can also predict the immunotherapy outcomes of LUAD patients to some extent.
Publisher
Springer Science and Business Media LLC
Subject
Cancer Research,Genetics,Oncology
Reference46 articles.
1. Siegel RL, Miller KD, Jemal A. Cancer statistics, 2019. CA Cancer J Clin. 2019;69:7–34.
2. Travis WD. Lung cancer pathology: current concepts. Clin Chest Med. 2020;41:67–85.
3. Liu X, Nie L, Zhang Y, Yan Y, Wang C, Colic M, et al. Actin cytoskeleton vulnerability to disulfide stress mediates disulfidptosis. Nat Cell Biol. 2023;25:404–14.
4. Liu X, Zhuang L, Gan B. Disulfidptosis: disulfide stress-induced cell death. Trends Cell Biol. 2023;S0962–8924(23):00141–51.
5. Zheng P, Zhou C, Ding Y, Duan S. Disulfidptosis: a new target for metabolic cancer therapy. J Exp Clin Cancer Res. 2023;42:103.
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献