RNA-seq of nine canine prostate cancer cell lines reveals diverse therapeutic target signatures

Author:

Packeiser Eva-Maria,Taher Leila,Kong Weibo,Ernst Mathias,Beck Julia,Hewicker-Trautwein Marion,Brenig Bertram,Schütz Ekkehard,Murua Escobar Hugo,Nolte IngoORCID

Abstract

Abstract Background Canine prostate adenocarcinoma (PAC) and transitional cell carcinoma (TCC) are typically characterized by metastasis and chemoresistance. Cell lines are important model systems for developing new therapeutic strategies. However, as they adapt to culturing conditions and undergo clonal selection, they can diverge from the tissue from which they were originally derived. Therefore, a comprehensive characterization of cell lines and their original tissues is paramount. Methods This study compared the transcriptomes of nine canine cell lines derived from PAC, PAC metastasis and TCC to their respective original primary tumor or metastasis tissues. Special interests were laid on cell culture-related differences, epithelial to mesenchymal transition (EMT), the prostate and bladder cancer pathways, therapeutic targets in the PI3K-AKT signaling pathway and genes correlated with chemoresistance towards doxorubicin and carboplatin. Results Independent analyses for PAC, PAC metastasis and TCC revealed 1743, 3941 and 463 genes, respectively, differentially expressed in the cell lines relative to their original tissues (DEGs). While genes associated with tumor microenvironment were mostly downregulated in the cell lines, patient-specific EMT features were conserved. Furthermore, examination of the prostate and bladder cancer pathways revealed extensive concordance between cell lines and tissues. Interestingly, all cell lines preserved downstream PI3K-AKT signaling, but each featured a unique therapeutic target signature. Additionally, resistance towards doxorubicin was associated with G2/M cell cycle transition and cell membrane biosynthesis, while carboplatin resistance correlated with histone, m- and tRNA processing. Conclusion Comparative whole-transcriptome profiling of cell lines and their original tissues identifies models with conserved therapeutic target expression. Moreover, it is useful for selecting suitable negative controls, i.e., cell lines lacking therapeutic target expression, increasing the transfer efficiency from in vitro to primary neoplasias for new therapeutic protocols. In summary, the dataset presented here constitutes a rich resource for canine prostate and bladder cancer research.

Publisher

Springer Science and Business Media LLC

Subject

Cancer Research,Genetics,Oncology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3