CD4 T-cell immune stimulation of HER2 + breast cancer cells alters response to trastuzumab in vitro

Author:

Song Patrick N.,Mansur Ameer,Dugger Kari J.,Davis Tessa R.,Howard Grant,Yankeelov Thomas E.,Sorace Anna G.ORCID

Abstract

Abstract Introduction The HER2 + tumor immune microenvironment is composed of macrophages, natural killer cells, and tumor infiltrating lymphocytes, which produce pro-inflammatory cytokines. Determining the effect of T-cells on HER2 + cancer cells during therapy could guide immunogenic therapies that trigger antibody-dependent cellular cytotoxicity. This study utilized longitudinal in vitro time-resolved microscopy to measure T-cell influence on trastuzumab in HER2 + breast cancer. Methods Fluorescently-labeled breast cancer cells (BT474, SKBR3, MDA-MB-453, and MDA-MB-231) were co-cultured with CD4 + T-cells (Jurkat cell line) and longitudinally imaged to quantify cancer cell viability when treated with or without trastuzumab (10, 25, 50 and 100 μg/mL). The presence and timing of T-cell co-culturing was manipulated to determine immune stimulation of trastuzumab-treated HER2 + breast cancer. HER2 and TNF-α expression were evaluated with western blot and ELISA, respectively. Significance was calculated using a two-tailed parametric t-test. Results The viability of HER2 + cancer cells significantly decreased when exposed to 25 μg/mL trastuzumab and T-cells, compared to cancer cells exposed to trastuzumab without T-cells (p = 0.01). The presence of T-cells significantly increased TNF-α expression in trastuzumab-treated cancer cells (p = 0.02). Conversely, cancer cells treated with TNF-α and trastuzumab had a similar decrease in viability as trastuzumab-treated cancer cells co-cultured with T-cells (p = 0.32). Conclusions The presence of T-cells significantly increases the efficacy of targeted therapies and suggests trastuzumab may trigger immune mediated cytotoxicity. Increased TNF-α receptor expression suggest cytokines may interact with trastuzumab to create a state of enhanced response to therapy in HER2 + breast cancer, which has potential to reducing tumor burden.

Funder

American Cancer Society

Cancer Prevention and Research Institute of Texas

National Cancer Institute

Publisher

Springer Science and Business Media LLC

Subject

Cancer Research,Genetics,Oncology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3