ARF6 promotes hepatocellular carcinoma proliferation through activating STAT3 signaling

Author:

Hu Yabing,Huang Yongchu,Xie Xiaohang,Li Longshan,Zhang Yong,Zhang Xiaochao

Abstract

Abstract Background Hepatocellular Carcinoma (HCC) possesses the high mortality in cancers worldwide. Nevertheless, the concrete mechanism underlying HCC proliferation remains obscure. In this study, we show that high expression of ARF6 is associated with a poor clinical prognosis, which could boost the proliferation of HCC. Methods Immunohistochemistry and western blotting were used to detect the expression level of ARF6 in HCC tissues. We analyzed the clinical significance of ARF6 in primary HCC patients. We estimated the effect of ARF6 on tumor proliferation with in vitro CCK8, colony formation assay, and in vivo nude mouse xenograft models. Immunofluorescence was conducted to investigate the ARF6 localization. western blotting was used to detect the cell cycle-related proteins with. Additionally, we examined the correlation between ARF6 and STAT3 signaling in HCC with western blotting, immunohistochemistry and xenograft assay. Results ARF6 was upregulated in HCC tissues compared to adjacent normal liver tissues. The increased expression of ARF6 correlated with poor tumor differentiation, incomplete tumor encapsulation, advanced tumor TNM stage and poor prognosis. ARF6 obviously promoted HCC cell proliferation, colony formation, and cell cycle progression. In vivo nude mouse xenograft models showed that ARF6 enhanced tumor growth. Furthermore, ARF6 activated the STAT3 signaling and ARF6 expression was positively correlated with phosphorylated STAT3 level in HCC tissues. Furthermore, after intervening of STAT3, the effect of ARF6 on tumor-promoting was weakened, which demonstrated ARF6 functioned through STAT3 signaling in HCC. Conclusions Our results indicate that ARF6 promotes HCC proliferation through activating STAT3 signaling, suggesting that ARF6 may serve as potential prognostic and therapeutic targets for HCC patients.

Funder

National Natural Science Foundation of China

Publisher

Springer Science and Business Media LLC

Subject

Cancer Research,Genetics,Oncology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3