Abstract
Abstract
Background
Osimertinib resistance limits the treatment of epidermal growth factor receptor-(EGFR)-mutated non-small-cell lung carcinoma (NSCLC). The mechanisms of osimertinib resistance need to be elucidated to determine alternative treatment strategies. This study explores the role of M2 type tumor-associated macrophage (TAM)-derived exosomal MSTRG.292666.16 in osimertinib resistance, and its related competing endogenous RNA (ceRNA) mechanism.
Methods
M2 type TAMs were induced with 200 ng/mL phorbol 12-myristate 13-acetate, 20 ng/mL IL-4 and IL-13, and M2 type macrophage markers were measured by RT-qPCR. Next, the exosomes were isolated and characterized. Tumor formation in nude mice was conducted using H1975 cells under different treatment conditions. Small RNA sequencing was performed on exosomes derived from sensitive and resistant plasma, and ceRNA networks were constructed. Fluorescence in situ hybridization was used to observe the localization of MSTRG.292666.16, and a ceRNA network (MSTRG.292666.16-miR-6836-5p-MAPK8IP3) was selected for further validation.
Results
M2 type TAMs, and M2 type TAM-derived exosomes were successfully induced and isolated. Nude mice results showed that M2 type TAM-derived exosomes and MSTRG.292666.16 overexpression significantly increased tumor volume after administration of osimertinib for 4 weeks. M2 type TAMs were found in the resistant plasma, and MSTRG.292666.16 localized in the cytoplasm of H1975 cells. In addition, the genes in the ceRNA networks were significantly enriched in eight GO terms and seven KEGG pathways, including the MAPK signaling pathway. Subsequently, the levels of MSTRG.292666.16 and MAPK8IP3 significantly increased in both resistant plasma-derived exosomes and M2 type TAM-derived exosomes, while miR-6836-5p levels were significantly reduced. Finally, MSTRG.292666.16, miR-6836-5p, and MAPK8IP3 were part of the same network.
Conclusions
M2 type TAM-derived exosomes promoted osimertinib resistance in NSCLC by regulating the MSTRG.292666.16/miR-6386-5p/MAPK8IP3 axis.
Funder
Key projects of Shanghai Zhangjiang High Tech Park
Publisher
Springer Science and Business Media LLC
Subject
Cancer Research,Genetics,Oncology
Cited by
31 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献