The proteomics analysis of extracellular vesicles revealed the possible function of heat shock protein 60 in Helicobacter pylori infection

Author:

Li Yujie,Cao Hui,Qiu Dewen,Wang Nan,Wang Yan,Wen Tingting,Wang Jianjun,Zhu Hong

Abstract

Abstract Background Helicobacter pylori (H. pylori) infection is a major risk factor for gastric diseases, including gastritis and gastric cancer. Heat shock protein 60 (HSP60) is a chaperone protein involved in various cellular processes and has been implicated in the immune response to bacterial infections. Extracellular vesicles (EVs) containing various protein components play important roles in cell communication. In the present study, a systematic proteomic analysis of EVs obtained from H. pylori infected cells was performed and the EV-derived HSP60 function was studied. Methods EVs were evaluated by nanoparticle tracking analysis, transmission electron microscopy and western blotting. The recognized protein components were quantified by label-free proteomics and subjected to bioinformatics assays. The expression of HSP60 in EVs, host cells and gastric cancers infected by H. pylori was determined by western blotting and immunohistochemical, respectively. In addition, the apoptotic regulation mechanisms of HSP60 in H. pylori infection were analyzed by western blotting and flow cytometry. Results A total of 120 important differential proteins were identified in the EVs from H. pylori-infected cells and subjected to Gene Ontology analysis. Among them, CD63, HSP-70 and TSG101 were verified via western blotting. Moreover, HSP60 expression was significantly increased in the EVs from H. pylori-infected GES-1 cells. H. pylori infection promoted an abnormal increase in HSP60 expression in GES-1 cells, AGS cells, gastric mucosa and gastric cancer. In addition, knockdown of HSP60 suppressed the apoptosis of infected cells and the expression of Bcl2, and promoted the upregulation of Bax. Conclusion This study provides a comprehensive proteomic profile of EVs from H. pylori-infected cells, shedding light on the potential role of HSP60 in H. pylori infection. The findings underscore the significance of EV-derived HSP60 in the pathophysiology of H. pylori-associated diseases.

Funder

the Suzhou Key Discipline - Experimental Diagnosis

the National Natural Science Foundation of China

the Science and Technology Development Plan Project of Suzhou

Young Scientists Foundation of Changzhou No.2 People's Hospital

Publisher

Springer Science and Business Media LLC

Subject

Cancer Research,Genetics,Oncology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3